Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 58-62    https://doi.org/10.11896/j.issn.1005-023X.2017.020.013
  材料研究 |
固溶温度对Mg-2Gd-2Zn轧制板材显微组织和力学性能的影响*
朱涛1,2, 黄光杰1, 周芳2, 赵飞2
1 重庆大学材料科学与工程学院, 重庆 400044;
2 贵州大学材料与冶金学院, 贵阳 550025
Effect of Solid Solution Temperature on Microstructure and Mechanical Properties of the Rolled Mg-2Gd-2Zn Alloy Sheets
ZHU Tao1,2, HUANG Guangjie1, ZHOU Fang2, ZHAO Fei2
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400044;
2 College of Materials and Metallurgy, Guizhou University, Guiyang 550025
下载:  全 文 ( PDF ) ( 2405KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用OM、SEM、EDS、XRD、显微硬度计和力学试验机研究了400 ℃、430 ℃、460 ℃、490 ℃和520 ℃不同固溶温度对轧制态Mg-2Gd-2Zn合金板材组织结构和力学性能的影响。结果表明,当温度不高于490 ℃时,晶粒尺寸随固溶温度升高几乎呈线性增长趋势。第二相颗粒也随固溶温度升高总体呈减少趋势。但在490 ℃固溶温度下,第二相反而增加,且呈细小弥散分布。此时显微硬度达最大值,为77.88HV,固溶时效强化效果显著。XRD分析结果表明,当固溶温度从430 ℃升高到490 ℃时,第二相主要由MgZn2和GdZn5的初生相转变为MgZn2和GdZn的沉淀相。490 ℃固溶处理下合金板材沿RD、TD和45°方向的抗拉强度均达到最大值,分别为262 MPa、244 MPa和254 MPa;断裂伸长率略有降低,分别为34%、31%和39%,但塑性各向异性降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱涛
黄光杰
周芳
赵飞
关键词:  Mg-2Gd-2Zn合金轧制板材  固溶温度  显微组织  力学性能    
Abstract: Different solution treatments at 400 ℃, 430 ℃, 460 ℃, 490 ℃ and 520 ℃ were carried out on the rolled Mg-2Gd-2Zn alloy sheets under the same solution time of 0.5 h and aging treatment of 225 ℃×12 h. The effects of solution temperature on the microstructure, phases composition and mechanical properties of the alloy sheets were investigated by OM, SEM, EDS, XRD, micro-hardness and mechanical tester. Below 490 ℃, the grain size increased linearly and the number of the second phase particles decreased with the increasing solution temperature. Whereas the second phase particles suddenly increased and presented dispersed distribution at 490 ℃, which resulted in the highest micro-hardness of 77.88HV. XRD results show that the compositions of second phases have transformed from the primary phase of MgZn2 and GdZn5 at 430 ℃ to the precipitated phase of MgZn2 and GdZn at 490 ℃. Therefore, under 490 ℃, the Mg-2Gd-2Zn alloy sheets present good mechanical properties with the highest tensile strength of 262 MPa, 244 MPa and 254 MPa along the direction of RD, TD and 45°, and elongation of 34%,31% and 39% with low ductility anisotropy, respectively.
Key words:  rolled Mg-2Gd-2Zn alloy sheet    solid solution temperature    microstructure    mechanical properties
               出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TG146.2  
基金资助: *贵州省联合基金项目(黔科合LH字[2015]7651号)
作者简介:  朱涛:女,1976年生,博士研究生,主要从事金属材料组织与性能方面的研究 E-mail:ivzhutao@126.com 黄光杰:通讯作者,男, 1964年生,教授,主要从事轻合金加工技术等方面的研究 E-mail:gjhuang@cqu.edu.cn
引用本文:    
朱涛, 黄光杰, 周芳, 赵飞. 固溶温度对Mg-2Gd-2Zn轧制板材显微组织和力学性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 58-62.
ZHU Tao, HUANG Guangjie, ZHOU Fang, ZHAO Fei. Effect of Solid Solution Temperature on Microstructure and Mechanical Properties of the Rolled Mg-2Gd-2Zn Alloy Sheets. Materials Reports, 2017, 31(20): 58-62.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.013  或          http://www.mater-rep.com/CN/Y2017/V31/I20/58
1 Sun Ming, Wu Guohua, Wang Wei, et al. Research progress of Mg-Gd Alloy[J]. Mater Rev:Rev, 2009,23(6):98(in Chinese).
孙明,吴国华,王玮,等. Mg-Gd系镁合金的研究进展[J]. 材料导报:综述篇,2009,23(6):98.
2 Ding Wenjiang, Fu Penghuai, Peng Liming, et al. Advanced magnesium alloys and their applications in aerospace[J]. Spacecraft Environment Eng, 2011,28(2):103(in Chinese).
丁文江, 付彭怀, 彭立明,等. 先进镁合金材料及其在航空航天领域中的应用[J]. 航天器环境工程, 2011,28(2):103.
3 Zhang Dongyang, Wang Linsheng, Guo Doudou. Research and application of rare earth magnesium alloy[J]. Mater Rev, 2015,29(S2):514(in Chinese).
张东阳, 王林生, 郭斗斗. 稀土镁合金性能研究及应用[J]. 材料导报,2015,29(专辑26):514.
4 Jafari Nodooshan H R, Wu Guohua, Liu Wencai, et al. Effect of Gd content on high temperature mechanical properties of Mg-Gd-Y-Zr alloy[J]. Mater Sci Eng A, 2016,651:840.
5 Liu Qiuzu, Ding Xiaofeng, Liu Yanping, et al. Analysis on micro-structure and mechanical properties of Mg-Gd-Y-Nd-Zr alloy and its reinforcement mechanism[J]. J Alloys Compd, 2017,690:961.
6 Cai Zhengxu, Tang Di, Jiang Haitao, et al. Influence of Gd concentration on texture and stretch formability of rolled Mg-Zn-Gd alloys at room temperature[J]. Rare Metal Mater Eng, 2013,42(10):2073(in Chinese).
蔡正旭, 唐荻, 江海涛, 等. 不同Gd含量对变形Mg-Zn-Gd合金织构和室温成形性能的影响[J]. 稀有金属材料与工程, 2013,42(10):2073.
7 Nie J, Gao X, Zhu S. Enhanced age hardening response and creep resistance of Mg-Gd alloys containing Zn[J]. Scr Mater, 2005,53(9):1049.
8 Huang Fei, Wu Yujuan, Peng Liming, et al. Research status and development trend of LPSO structure in Mg-Gd-Zn-(Zr) alloy[J]. Mater Rev:Rev, 2011,25(2):8(in Chinese).
黄飞, 吴玉娟, 彭立明, 等. Mg-Gd-Zn(-Zr)合金中长周期堆垛有序结构的研究现状及发展趋势[J].材料导报:综述篇, 2011,25(2):8.
9 Chen Yuan, He Zhanbing. Research progress on mechanical properties of Mg-Zn-RE alloys reinforced by quasicrystals[J]. Mater Rev:Rev, 2015,29(10):82(in Chinese).
陈远, 何战兵. 准晶增强Mg-Zn-RE合金的力学性能研究进展[J]. 材料导报:综述篇,2015,29(10):82.
10Chen Xianhua, Liu Juan, Zhang Zhihua, et al. Research status and development trend of heating treatment for magnesium alloy[J]. Mater Rev:Rev, 2011,25(12):142(in Chinese).
陈先华, 刘娟, 张志华, 等. 镁合金热处理的研究现状及发展趋势[J]. 材料导报:综述篇,2011,25(12):142.
11Tian Yuan, Huang Hua, Yuan Guangyin, et al. Nanoscale icosahedral quasicrystal phase precipitation mechanisum during annealing for Mg-Zn-Gd-based alloys[J]. Mater Lett, 2014,130:236.
12Chen Jingqu, Liu Jiangwen. Research and development of G. P. zones and aging strengthening of Mg-Zn alloys[J]. Mater Rev, 2008,22(S3):342(in Chinese).
陈敬区, 刘江文. Mg-Zn系合金G.P.区和时效强化的研究进展[J]. 材料导报,2008,22(专辑Ⅻ):342.
13Saito K, Yasuhara A, Hiraga K. Microstructural changes of Gui-nier-Preston zones in an Mg-1.5at%Gd-1at%Zn alloy studied by HAADF-STEM technique[J]. J Alloys Compd, 2011,509:2031.
14Michiaki Y, Tsutomu A, Shintaro Y, et al. Mechanical properties of warm-extruded Mg-Zn-Gd alloy with coherent 14H long periodic stacking ordered structure precipitate[J]. Scr Mater, 2005,53:799.
15Lu Fumin, Ma Aibin, Jiang Jinghua, et al. Enhanced mechanical properties and rolling formability of fine-grained Mg-Gd-Zn-Zr alloy produced by equal-channel angular pressing[J]. J Alloys Compd, 2015,643:28.
16Gröbner J, Kozlov A, Fang Xiya, et al. Phase equilibria and transformations in ternary Mg-Gd-Zn alloys[J]. Acta Mater, 2015,90:400.
17Michiaki Y, Minami S, Masahiko N, et al. Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature[J]. Acta Mater, 2007,55:6798.
18Yuan Guangyin, Liu Yong, Lu Chen, et al. Effect of quasicrystal and Laves phases on strength and ductility of as-extruded and heat treated Mg-Zn-Gd-based alloys[J]. Mater Sci Eng A, 2008,472:75.
19Yan H, Chen R S, Han E H. Room-temperature ductility and anisotropy of two rolled Mg-Zn-Gd alloys[J]. Mater Sci Eng A, 2010,527:3317.
20Wu D, Chen R S, Han E H. Excellent room-temperature ductility and formability of rolled Mg-Gd-Zn alloy sheets[J]. J Alloys Compd, 2011,509:2856.
21Pan Shiwei, Xin Yunchang, Huang Guangjie, et al. Tailoring the texture and mechanical anisotropy of a Mg-2Zn-2Gd plate by varying the rolling path[J]. Mater Sci Eng A, 2016,653:93.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[4] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[5] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[6] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[7] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[8] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[9] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[10] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[11] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[12] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[13] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed