Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 283-287    
  无机非金属及其复合材料 |
基于GTM的沥青混合料配合比设计方法试验研究
柴金玲1,2, 栗威2,3,4
1 河南交通职业技术学院,郑州 451400
2 长沙理工大学,公路养护技术国家工程实验室,长沙 410114
3 河南省交通科学技术研究院有限公司,郑州 450006
4 河南未来交通科技有限公司,郑州 450000
GTM-based Experimental Study on the Asphalt Mixtures Design
CHAI Jinling1,2, LI Wei2,3,4
1 Henan Vocational and Technical College of Communications, Zhengzhou 451400, China
2 State Engineering Laboratory of Highway Maintenance Technology, Changsha University of Science & Technology, Changsha 410114, China
3 Henan Transportation Research Institute Co.,Ltd, Zhengzhou 450006, China
4 Henan Future Transportation Technologies Co.,Ltd, Zhengzhou 450000, China
下载:  全 文 ( PDF ) ( 3723KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究沥青混合料GTM(Gyratory testing machine)配合比设计方法在道路工程中的有效实用性,对GTM设计和马歇尔设计的沥青混合料进行体积参数的对比分析,最后通过路用性能试验进行验证。GTM设计方法采用极限平衡状态成型试件,以稳定系数(GIS)、抗剪安全系数(GSF)综合确定最佳油石比。与马歇尔配合比设计相比,GTM确定的最佳油石比显著下降,毛体积相对密度和沥青饱和度(VFA)指标增加,空隙率(VV)和矿料间隙率(VMA)指标偏低,不适合采用马歇尔设计方法进行指标控制,在此条件下试验得出的体积参数仅作为参考指标,需要对路用性能进行相应验证;采用GTM设计的沥青混合料各项路用性能均优于马歇尔配合比设计,对高温稳定性能和低温抗冻损能力改善效果突出,低温抗裂性能优势不明显。随温度的升高,GTM的高温抗车辙能力更加优良,且具有更低的高温敏感性。AC-16试验数据显示,沥青用量降低了6.1%,毛体积相对密度提高1.9%,VV下降了37.6%,VMA下降了18.5%,稳定度提高27%。其中,60 ℃动稳定度提高了26.9%,65 ℃动稳定度提高了99.2%,低温弯曲破坏应变增加了4.7%,残留稳定度提高了4.9%,冻融劈裂强度比提高了8.7%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
柴金玲
栗威
关键词:  道路工程  GTM设计方法  沥青混合料  马歇尔设计方法  路用性能    
Abstract: In ordert to study the asphalt mixture GTM (Gyratory testing machine) mixture ratio design method in the road engineering practicability effectively, through comparison and analysis of volumetric property with GTM design and Marshall design. Finally, the pavement performance of on grouted composite materials was validated. The results show that: The limit equilibrium methods adopted in GTM design methods, the optimum proportion can be determined by stability factor GIS and shear safety factor GSF. Compared with the Marshall mix design, the optimum proportion has declined markedly, volume relative density and VFA asphalt saturation index increased, voids of mineral aggregate and ratio of void have generally on the low side; Marshall design method control is not considered to fit for asphalt mixture. Under the optimum conditions. Just as a reference index volume compressibility parameters, the road performance requires corresponding verification. The performance of GTM design asphalt mixture is better than the Marshall mix design. High temperature stable performance and low temperature freeze resistance loss ability were improved significantly. Low temperature anti-cracking performance advantage is not obvious. With the increase of temperature, the higher-temperature deformation resistance of asphalt mixture was more, high temperature has a lower sensitivity. In the case of AC-16 test data, Asphalt content was reduced by 6.1%, volume relative density increased by 1.9%, VV fell by 37.6%,VMA reduced by 18.5% and stability increased by 27%. Among them, 60 ℃ dynamic stability increased by 26.9%,65 ℃ dynamic stability increased by 99.2%, low temperature bending failure strain increased by 4.7%, and the residual stability increased by 4.9%, freeze-thaw splitting strength ratio increased by 8.7%.
Key words:  road engineering    GTM design method    asphalt mixture    Marshall design method    pavement performance
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  U414.103  
基金资助: 长沙理工大学公路养护技术国家工程实验室开放基金(kfj140103);河南省科技攻关项目(192102310470);河南省交通运输厅科技项目(2018J3);国家自然科学基金青年科学基金(51708048)
通讯作者:  liwei11254@126.com   
作者简介:  柴金玲,1976年11月出生于天津市,2001年7月毕业于华北水利水电学院建筑工程专业,取得工学学士学位。大学毕业后任职于河南交通职业技术学院,从事交通土建工程方面的教学工作,同时还负责学校工程建设工作。目前职称为副教授,主要研究领域为土木工程施工与管理,她曾荣获河南省教学成果二等奖、省教育厅科技成果一等奖、省交通运输科技成果奖等奖项十余项,并是河南省高校基本建设协会会员。栗威,2013年7月毕业于长沙理工大学道路与铁道工程专业。主要从事城市建筑废弃物再生资源利用、废旧沥青混合料冷再生应用、橡胶复合改性沥青推广应用、绿色公路建设等。
引用本文:    
柴金玲, 栗威. 基于GTM的沥青混合料配合比设计方法试验研究[J]. 材料导报, 2020, 34(Z2): 283-287.
CHAI Jinling, LI Wei. GTM-based Experimental Study on the Asphalt Mixtures Design. Materials Reports, 2020, 34(Z2): 283-287.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/283
1 张书华,郭金星.公路交通科技,2018, 35(8),40.
2 周卫峰.基于GTM的沥青混合料配合比设计方法研究.硕士学位论文, 长安大学, 2006.
3 李正中,何兆益,宋晓燕, 等.重庆交通大学学报(自然科学版),2009,28(4),715.
4 李正中,张朝清,张亮, 等.西部交通科技,2019(3),13.
5 郭建,肖振纲.路基工程,2016(5),109.
6 吴传海,刘仰韶.武汉理工大学学报(交通科学与工程版),2012,36(1),51.
7 中华人民共和国行业标准.公路沥青路面施工技术规范(JTG F40-2004),人民交通出版社,2009.
8 交通部公路科学研究所.公路工程沥青与沥青混合料试验规程(JTG E20-2011),人民交通出版社,2011.
[1] 成志强, 张晓燕, 孔繁盛, 郭鹏. 利用表面能理论及拉脱试验分析沥青膜的剥离行为[J]. 材料导报, 2020, 34(Z2): 288-294.
[2] 张庆, 侯德华, 刘廷国. 水固化型聚合物改性乳化沥青混合料性能研究[J]. 材料导报, 2020, 34(Z2): 612-617.
[3] 李旭阳, 索智, 罗亮. 温拌沥青混合料在生产阶段的节能减排量化分析[J]. 材料导报, 2020, 34(Z1): 209-212.
[4] 丛卓红, 陈恒达, 郑南翔, 周晚君. 水泥混凝土路面纹理的研究进展[J]. 材料导报, 2020, 34(9): 9110-9116.
[5] 张勤玲, 黄志义. FTIR分峰拟合法定量分析沥青胶浆在含盐高温高湿环境中的结构变化[J]. 材料导报, 2020, 34(8): 8083-8089.
[6] 赵毅, 杨旋, 郝增恒, 梁乃兴, 田于锋. 沥青混合料均匀性数字图像评价方法研究进展[J]. 材料导报, 2020, 34(23): 23088-23099.
[7] 刘涛, 郭乃胜, 谭忆秋, 尤占平, 金鑫. 路用相变材料研究现状和发展趋势[J]. 材料导报, 2020, 34(23): 23179-23189.
[8] 吴玲玲, 任其亮, 罗莉. 公路沥青混凝土路面材料高温稳定性研究[J]. 材料导报, 2020, 34(22): 22083-22086.
[9] 朱旭伟, 李波, 魏定邦, 文卫军, 周家宁. 循环堵塞-清洗对多孔沥青混合料渗水性能的影响[J]. 材料导报, 2020, 34(20): 20040-20045.
[10] 郭鹏, 谢凤章, 孟建玮, 孟献春, 魏琳, 徐建, 冯云霞. 沥青再生过程中新-旧沥青界面混溶行为综述[J]. 材料导报, 2020, 34(13): 13100-13108.
[11] 李微, 韩森, 黄啟波, 姚腾飞, 徐鸥明. 细粒式薄表层沥青混合料中粗集料的骨架特性[J]. 材料导报, 2019, 33(4): 617-624.
[12] 毕洁夫, 郑南翔, 董是, 吴晓鑫. 基于大样本的沥青与粗集料原料对混合料水稳定性的影响分析[J]. 材料导报, 2019, 33(24): 4098-4104.
[13] 熊锐, 杨发, 关博文, 谢超, 李立顶, 盛燕萍, 陈华鑫. 路用高抗滑集料耐磨性能评价与机理分析[J]. 材料导报, 2019, 33(20): 3436-3440.
[14] 张航, 郝培文, 凌天清, 王学武, 何亮. 高温重复荷载作用下复合纤维沥青混合料细微观结构分析[J]. 材料导报, 2018, 32(6): 987-994.
[15] 刘子铭,陈华鑫,熊锐,王泳丹,王小雯. 复掺钢丝绒纤维/水镁石纤维沥青胶浆性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 295-300.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed