Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 288-294    
  无机非金属及其复合材料 |
利用表面能理论及拉脱试验分析沥青膜的剥离行为
成志强1,2, 张晓燕1, 孔繁盛1, 郭鹏2
1 山西交通科学研究院集团有限公司,黄土地区公路建设与养护技术交通行业重点实验室,太原 030006
2 重庆交通大学,交通土建工程材料国家地方联合工程实验室,重庆 400074
Investigation on Stripping Behavior of Asphalt Film Using Surface Energy Theory and Pull-off Test
CHENG Zhiqiang1,2, ZHANG Xiaoyan1, KONG Fansheng1, GUO Peng2
1 Transportation Key Laboratory of Road Construction and Maintenance Technology of Loess Area, Shanxi Transportation Research Institute Group Co. Ltd., Taiyuan 030006, China
2 National and Local Joint Engineering Laboratory of Traffic Civil Engineering Materials, Chongqing Jiaotong University, Chongqing 400074, China
下载:  全 文 ( PDF ) ( 8451KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水损害是我国沥青路面早期破坏的主要形式,而混合料中沥青膜的剥离行为是沥青路面发生水损害的第一阶段,但目前对沥青膜的潜在剥离面或薄弱界面位置、剥离行为机制缺乏统一认识。为深入了解沥青膜剥离行为特征,以表面能理论为基础,对沥青-集料界面黏附功、沥青内聚功进行量化表征;结合杨氏接触角试验,对比分析了不同沥青-集料组合在无水、有水条件下黏附功与内聚功的相对关系,从理论上推断沥青膜剥离的潜在界面位置;进一步结合沥青-集料附着力拉脱试验,对沥青膜剥离界面进行合理验证。结果表明:无水条件下,沥青内聚功、沥青-集料界面黏附功均为正值,且内聚功显著小于黏附功,沥青混合料薄弱界面位于沥青本体内部;有水条件下,内聚功与黏附功变为负值,表明在水分作用下沥青混合料中内聚破坏、界面黏附破坏均趋向自发性。附着力拉脱试验验证表明,干燥状态下,同种沥青与不同集料间附着力基本相当,破坏类型判定为沥青内聚损失C,沥青膜剥离面位于沥青本体内部;浸水状态下,破坏类型为界面黏附破坏A以及混合破坏C/A,沥青膜剥离面由沥青本体内部转移至沥青-集料界面处。本工作基于表面能理论及拉脱试验方法,分析了不同条件下沥青混合料剥离现象形成机制,为提高混合料抗水损害性能提供理论与试验基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
成志强
张晓燕
孔繁盛
郭鹏
关键词:  沥青混合料  水损害  剥离  表面能  黏附破坏  内聚损失    
Abstract: Moisture-induced damage is the main form of early failure of asphalt pavement in China, and stripping behavior of asphalt film is the first stage of moisture-induced damage in asphalt pavement. To further understand the characteristics of asphalt film stripping behavior, the adhesive work of asphalt-aggregate interface and the cohesive work within asphalt were quantitatively characterized using surface energy theory. Surface energy parameters of different asphalts and aggregates were tested by Young contact angle. The adhesive work of asphalt-aggregate combinations and the cohesive work within different asphalts were calculated under the dry condition and presence of water respectively. The relative magnitudes between adhesive work and cohesive work were compared to infer the potential position of stripping interface. A theoretical proof for stripping interface was provided by the pull-off test. The results showed that cohesive work and adhesive work are both positive without water in asphalt-aggregate system. The cohesive work is significantly less than adhesion work, indicating that the weak interface within asphalt mixture is located inside the asphalt body. With the presence of water, cohesive work and adhesive work are negative, indicating that cohesive failure and adhesive failure tended to be spontaneous in asphalt-aggregate system. The pull-off test shows that, the max breakaway forces between the same asphalt and different aggregates are basically the same on dry condition, and the failure type is determined as cohesive loss C, stripping interface is located inside the asphalt body. When immersed in water, the failure types are interfacial adhesive failure A and mixed failure C/A, and stripping interface is transferred from asphalt body to the asphalt-aggregate interface. This study was conducted based on surface energy theory and pull-off test, providing a theoretical and experimental basis for analyzing the formation mechanism of the stripping phenomenon of asphalt mixture with different conditions and improving the water damage resistance of the mixture.
Key words:  asphalt mixture    moisture-induced damage    stripping    surface energy    adhesive failure    cohesive loss
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  U416  
基金资助: 国家自然科学基金项目(51308329);山西省交通运输厅科技项目(2019-1-6);山西交通控股集团有限公司人才计划项目(19-JKKJ-66)
通讯作者:  chengzhiqiang2020@126.com   
作者简介:  成志强,山西交通科学研究院集团有限公司高级工程师,入选2018年度山西省“三晋英才”拔尖骨干人才荣誉称号。主要从事沥青及沥青混合料材料性能研究、沥青路面结构优化等工作;获2019年度山西省科学技术进步奖(一等奖)、2019年度中国交通运输协会科学技术奖(三等)、2017年度中国公路学会科学技术进步奖(二等奖);发表核心论文20余篇,发明授权3项、实用新型4项;担任国内核心期刊《建筑材料学报》审稿专家、《新材料新装饰》杂志委员等。
引用本文:    
成志强, 张晓燕, 孔繁盛, 郭鹏. 利用表面能理论及拉脱试验分析沥青膜的剥离行为[J]. 材料导报, 2020, 34(Z2): 288-294.
CHENG Zhiqiang, ZHANG Xiaoyan, KONG Fansheng, GUO Peng. Investigation on Stripping Behavior of Asphalt Film Using Surface Energy Theory and Pull-off Test. Materials Reports, 2020, 34(Z2): 288-294.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/288
1 冯俊领, 郭忠印, 陈崇驹, 等. 建筑材料学报, 2007, 10(5), 548.
2 刘克非, 邓林飞, 郑佳宇, 等. 材料研究学报, 2016, 30(10), 773.
3 Caro S, Masad E, Bhasin A, et al. International Journal of Pavement Engineering, 2008, 9(2), 99.
4 沈金安. 国外公路, 1992(6), 35.
5 Luo R, Tu C.Construction and Building Materials, 2019, 207(5), 145.
6 Mehrara A, Khodaii A.Construction and Building Materials, 2013, 38(1), 423.
7 Canestrari F, Cardone F, Graziani A, et al.Road Materials and Pavement Design, 2010, 11(sup1), 11.
8 王威娜, 徐青杰, 周圣雄, 等. 材料导报:综述篇, 2019, 33(7), 2197.
9 成志强, 孔繁盛. 建筑材料学报, 2016, 19(4), 779.
10 黄继成, 黄彭. 石油沥青, 2008, 19(4), 52.
11 Barnes G T, Gentle I R.Interfacial science: an introduction, Oxford University Press, UK, 2011.
12 Tan Y Q, Guo M.Construction and Building Materials, 2013, 47(10), 254.
13 Zhu J, Zhang K, Liu K, et al.Construction and Building Materials, 2020, 244, 118404.
14 Esmaeili N, Hamedi G H, Khodadadi M.Construction and Building Materials, 2019, 213, 167.
15 李波, 张智豪, 刘祥, 等. 材料导报:研究篇, 2017, 31(2), 115.
16 罗蓉, 郑松松, 张德润, 等. 中国公路学报, 2017, 30(6), 209.
17 王岚, 贾永杰, 张大伟, 等. 复合材料学报, 2016, 33(10), 2380.
18 Hamedi G H, Moghadas N F.Road Materials and Pavement Design, 2015, 16(2), 239.
19 王涛, 才洪美, 张玉贞. 石油沥青, 2008, 22(6), 10.
20 邓越, 孙国强, 胡明君, 等. 石油沥青, 2018, 32(2), 34.
21 Wang H, Wang J, Chen J.Engineering Fracture Mechanics, 2014, 132, 104.
22 Hossain M I, Tarefder R A.Construction and Building Materials, 2013, 49, 536.
23 Ding X, Ma T, Gu L, et al.Materials & Design, 2019, 185, 108238.
[1] 柴金玲, 栗威. 基于GTM的沥青混合料配合比设计方法试验研究[J]. 材料导报, 2020, 34(Z2): 283-287.
[2] 张庆, 侯德华, 刘廷国. 水固化型聚合物改性乳化沥青混合料性能研究[J]. 材料导报, 2020, 34(Z2): 612-617.
[3] 王永红, 杨倩倩, 刘辰, 刘会斌, 林晨, 肖鹏飞, 巩凌峰. 非金属超疏水纳米涂层技术的研究进展[J]. 材料导报, 2020, 34(Z1): 66-71.
[4] 李旭阳, 索智, 罗亮. 温拌沥青混合料在生产阶段的节能减排量化分析[J]. 材料导报, 2020, 34(Z1): 209-212.
[5] 刘仁杰, 李三喜, 王松, 张爱玲. 蒙脱土剥离方法的研究进展[J]. 材料导报, 2020, 34(Z1): 249-254.
[6] 赵毅, 杨旋, 郝增恒, 梁乃兴, 田于锋. 沥青混合料均匀性数字图像评价方法研究进展[J]. 材料导报, 2020, 34(23): 23088-23099.
[7] 吴玲玲, 任其亮, 罗莉. 公路沥青混凝土路面材料高温稳定性研究[J]. 材料导报, 2020, 34(22): 22083-22086.
[8] 耿九光, 兰倩, 刘光军, 周恒玉, 刘润喜. 基于表面能理论的破碎卵石与沥青粘附性能研究[J]. 材料导报, 2020, 34(20): 20034-20039.
[9] 朱旭伟, 李波, 魏定邦, 文卫军, 周家宁. 循环堵塞-清洗对多孔沥青混合料渗水性能的影响[J]. 材料导报, 2020, 34(20): 20040-20045.
[10] 郭鹏, 谢凤章, 孟建玮, 孟献春, 魏琳, 徐建, 冯云霞. 沥青再生过程中新-旧沥青界面混溶行为综述[J]. 材料导报, 2020, 34(13): 13100-13108.
[11] 王倩,高能,张天垚,姚光,潘泰松,高敏,林媛. 氧化物功能薄膜器件的柔性化策略[J]. 材料导报, 2020, 34(1): 1014-1021.
[12] 杜洪方, 王珂, 何松, 杨凯, 艾伟, 黄维. 富缺陷晶态WSe2纳米片:一种潜在的高效低成本析氢反应电催化剂[J]. 材料导报, 2020, 34(1): 1195-1200.
[13] 游敏, 李明波, 袁有录, 林高, 余海洲. 胶粘剂冲击性能测试方法研究现状[J]. 材料导报, 2019, 33(Z2): 210-214.
[14] 周莹, 肖利吉, 姚丽, 徐祖顺. 自修复型超疏水材料研究进展[J]. 材料导报, 2019, 33(7): 1234-1242.
[15] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed