Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 278-282    
  无机非金属及其复合材料 |
基于主成分分析法的乳化沥青残留物综合性能评价
侯德华1,2, 张庆1,3, 韩志宇1,2, 张芳超1,2
1 河南省高等级公路检测与养护技术重点实验室,新乡 453003
2 河南省高远公路养护技术有限公司,新乡 453003
3 河南师范大学化学化工学院,新乡 453007
Comprehensive Performance Evaluation of Emulsified Asphalt Residue Based on Principal Component Analysis
HOU Dehua1,2, ZHANG Qing1,3, HAN Zhiyu1,2, ZHANG Fangchao1,2
1 Henan Province Key Laboratory of High Grade Highway Detection and Maintenance Technology, Xinxiang 453003, China
2 Henan Gaoyuan Highway Maintenance Technology Co., LTD, Xinxiang 453003, China
3 School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
下载:  全 文 ( PDF ) ( 2956KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为评价高温蒸发方法和低温蒸发方法对乳化沥青综合性能的影响,采用动态剪切流变仪和低温测力延度仪分别对不同乳化沥青残留物进行力学性能研究,并利用主成分分析法建立乳化沥青蒸发残留物综合性能评价模型。试验表明,高低温蒸发方法都会对沥青造成老化,而高温蒸发方法会造成部分聚合物的降解,在一定程度上影响到乳化沥青残留物的实际性能评价,而低温蒸发方法能够最大程度避免SBR改性剂和乳化剂的破坏。在此基础上采用主成分分析法得出,高低温蒸发方法对乳化沥青蒸发残留物综合性能的影响占到11.312%,说明这两种蒸发方法对其综合性能的影响没有显著差别,而其中低温蒸发乳化沥青残留物的综合性能得分相对较高,更能客观反映乳化沥青的实际性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯德华
张庆
韩志宇
张芳超
关键词:  主成分分析法  高低温蒸发方法  乳化沥青  流变性  测力延度    
Abstract: In order to evaluate the influence of high temperature evaporation method and low temperature evaporation method on the comprehensive performance of emulsified asphalt, the dynamic shear rheometer and low temperature force ductility tester were used to study the mechanical properties of different emulsified asphalt residues, and the principal component analysis method was used to establish the comprehensive performance evaluation model of emulsified asphalt evaporation residues. The results show that the high-temperature and low-temperature evaporation method will cause certain aging of asphalt, while the high-temperature evaporation method will cause polymer degradation, to some extent, it affects the actual performance evaluation of emulsified asphalt residue, while the low-temperature evaporation method can avoid the damage of SBR modifier and emulsifier to the greatest extent. On this basis, the principal component analysis shows that the influence of high and low temperature evaporation on the performance of emulsified asphalt is only 11.312%, it shows that there is no significant difference between the two evaporation methods on their comprehensive performance, and the comprehensive performance score of low temperature evaporation emulsified asphalt residue is relatively high, which can reflect the actual performance of emulsified asphalt more objectively.
Key words:  principal component analysis    high-low temperature evaporation method    emulsified asphalt    rheological property    force ductility
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TU535  
基金资助: 国家重点研发计划(2018YFE0120200);河南省重大科技专项(151100310700);新乡市重大科技专项(ZD19007)
通讯作者:  244117380@qq.com   
作者简介:  侯德华,毕业于长安大学,并获得道路工程材料专业工学硕士学位,目前在河南省高等级公路检测与养护技术重点实验室从事路面材料的研究。
引用本文:    
侯德华, 张庆, 韩志宇, 张芳超. 基于主成分分析法的乳化沥青残留物综合性能评价[J]. 材料导报, 2020, 34(Z2): 278-282.
HOU Dehua, ZHANG Qing, HAN Zhiyu, ZHANG Fangchao. Comprehensive Performance Evaluation of Emulsified Asphalt Residue Based on Principal Component Analysis. Materials Reports, 2020, 34(Z2): 278-282.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/278
1 王杰,秦永春,刘然,等.公路交通科技,2019,36(4),8.
2 Xiao J, Jiang W, Ye W, et al.Construction and Building Materials, 2019, 220, 577.
3 李志刚, 郝培文, 徐金枝.材料导报, 2016, 30(10),121.
4 刘国祥, 孙景伟, 林元奎,等. 新型建筑材料, 2006,12(12),18.
5 畅润田,杜素军,裴强,等. 重庆交通大学学报(自然科学版),2016,35(5),38.
6 王文峰,朱富万,牛晓伟,等.石油沥青,2018,32(3),7.
7 常玉艳,裴建军,姚德宏. 石油沥青, 2004, 18(6),49.
8 Hanz A J, Arega Z A, Bahia H U.Transportation Research Record, 2010, 2179(1), 102.
9 Malladi H, Asnake M, LaCroix A, et al. Transportation Research Record, 2018, 2672(28): 256.
10 Farrar M, Salmans S, Planche J P. Transportation Research Record: Journal of the Transportation Research Board, 2013,2370(1),69.
11 Recovering Residue from Emulsified Asphalt Using Low-Tem perature Evaporative Techniques. AASHTO PP72-11.
12 Ruan Y, Davison R R, Glover C J. Fuel, 2003, 82(14),1763.
13 王岚,王子豪,李超.复合材料学报, 2017,34(7),1610.
14 Navarro F J, Partal P, MartíNez-Boza F, et al. Fuel, 2004, 83(14),2041.
15 王志超, 吕艳艳. 当代化工, 2019(5),996.
16 周燕,张凯,陈拴发,等. 长安大学学报:自然科学版, 2012, 32(3),30.
17 陈平, 黄晓明, 李丹. 公路交通科技, 2005, 22(7),6.
18 张庆,侯德华,史纪村,等.硅酸盐通报,2020,39(8),2662.
19 李波,韩森,徐鸥明,等.长安大学学报(自然科学版),2009,29(3),15.
[1] 王珩, 陆采荣, 刘伟宝, 梅国兴, 戈雪良, 杨虎. 砂的级配特性对砂浆流变性的影响及预测[J]. 材料导报, 2020, 34(Z2): 255-260.
[2] 刘克健, 高玉龙. 一种快速固化的环氧树脂基预浸料及其性能[J]. 材料导报, 2020, 34(Z2): 576-579.
[3] 张庆, 侯德华, 刘廷国. 水固化型聚合物改性乳化沥青混合料性能研究[J]. 材料导报, 2020, 34(Z2): 612-617.
[4] 汪德才, 郝培文, 乐金朝, 孙杨, 张庆. 冷再生用乳化沥青残留物的流变特性[J]. 材料导报, 2020, 34(6): 6081-6087.
[5] 张帅, 张健. 冷冻干燥法制备有机蒙脱土及其改性沥青性能研究[J]. 材料导报, 2020, 34(4): 4037-4042.
[6] 武斌, 安晓鹏, 史才军, 魏子易, 元强. 混凝土流变特性对其稳定性及浇筑后外观质量的影响[J]. 材料导报, 2020, 34(4): 4043-4048.
[7] 张倩倩, 刘建忠, 张丽辉, 刘加平. 矿物掺合料对低水胶比浆体流变性能的影响机制研究[J]. 材料导报, 2020, 34(22): 22054-22057.
[8] 翟莹, 苗苗, 肖立鲜. 锂渣细度对掺减水剂的水泥浆体流变性能的影响[J]. 材料导报, 2020, 34(18): 18056-18059.
[9] 杜华川, 王延宁, 何苗苗, 林梓锋, 吕正宗. 有机缓凝剂对水泥改性乳化沥青胶浆的改善效果研究[J]. 材料导报, 2019, 33(Z2): 254-260.
[10] 赵可成, 陈宇, 黄考取. 基于核壳结构缓释剂和抗氧化剂的新型复合沥青抗老化剂研究[J]. 材料导报, 2019, 33(Z2): 261-266.
[11] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[12] 司雯, 曹明莉, 冯嘉琪. 纤维增强水泥基复合材料的流动性与流变性研究进展[J]. 材料导报, 2019, 33(5): 819-825.
[13] 戴红, 刘跃军, 崔玲娜, 李秋艾. PBSu/PBAu嵌段聚酯酰脲共聚物的合成及流变性能[J]. 材料导报, 2019, 33(2): 347-351.
[14] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[15] 吕政桦, 申爱琴, 李悦, 郭寅川, 喻沐阳. 基于遗传优化的乳化沥青冷再生混合料的疲劳性能及机理研究[J]. 材料导报, 2019, 33(16): 2704-2709.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed