Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 351-355    
  金属与金属基复合材料 |
颗粒增强铝基复合材料TLP连接综述与展望
周长壮1, 马琳1,2, 崔庆贺1, 梁金第1
1 沈阳航空航天大学材料科学与工程学院,沈阳 110000;
2 University of Queensland,Australia 4072
A Review and Prospect of TLP Bonding Particle ReinforcedAluminum Matrix Composites
ZHOU Changzhuang1, MA Lin1,2, CUI Qinghe1, LIANG Jindi1
1 College of Material Science and Engineering, Shenyang Aerospace University, Shenyang 110000, China;
2 University of Queensland,Australia 4072
下载:  全 文 ( PDF ) ( 7015KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 颗粒增强铝基复合材料具有优良的性能,是当今材料科学与工程领域的研究热点之一。瞬间液相扩散连接(TLP)作为目前连接铝基复合材料的有效连接方法之一备受关注,文中对国内外颗粒增强铝基复合材料TLP技术的研究现状进行了论述。针对目前颗粒增强铝基复合材料TLP焊接技术存在的问题以及未来的发展进行了讨论及探索。采用TLP方法可实现颗粒增强铝基复合材料的连接,相比于其他方法,TLP技术所需温度和压力相对较低,但如何解决氧化膜阻碍、颗粒偏聚、润湿性差等问题仍是未来需攻克的主要难题。复合超声等外场辅助是解决TLP现存问题的可行方向之一。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周长壮
马琳
崔庆贺
梁金第
关键词:  颗粒增强铝基复合材料  TLP连接技术  U-TLP连接技术  颗粒偏聚    
Abstract: Particle-reinforced aluminum-based composites are one of the research hotspots in the field of materials science and engineering because of their excellent properties. Transient liquid phase (TLP) bonding has attracted much attention as one of the effective bonding methods for joining aluminum-based composites. The research status of particle-reinforced aluminum-based composite TLP bonding technology abroad is discussed. This paper discusses and explores the current problems and future development of TLP welding technology for particle-reinforced aluminum-based composites. The results show that the TLP method can be used to achieve the connection of particle-reinforced aluminum-based composites. Compared with other methods, the temperature and pressure required by the TLP technology are relatively low. However, how to solve the problems of oxide film obstruction, particle segregation, and poor wetness are still the main problems to be overcome in the future. External field assistance such as compound ultrasound is one of the feasible directions to solve the existing problems of TLP.
Key words:  particle reinforced aluminum matrix composite    TLP bonding    U-TLP bonding    particle segregation
                    发布日期:  2020-07-01
ZTFLH:  TG456.9  
基金资助: 国家自然科学基金青年基金项目(51705338;51905355);辽宁省自然基金面上项目(20180550471)
作者简介:  周长壮,2018年6月毕业于沈阳航空航天大学,获得工学学士学位。现为沈阳航空航天大学材料科学与工程学院硕士研究生,在马琳副教授的指导下进行研究。目前主要研究领域为超声复合连接技术研究;马琳,沈阳航空航天大学材料科学与工程学院副教授、硕士研究生导师。2015年4于哈尔滨工业大学材料加工工程取得博士学位,2019年4月至今,澳大利亚昆士兰大学及南昆士兰大学访问学者。2018年入选辽宁省“百千万”人才工程。主要从事超声复合连接技术研究。近年来,在超声复合钎焊、搅拌摩擦焊、扩散焊方向发表论文30余篇,包括Ultrasonics Sonochemistry、Ultrasonics、Composites: Part A、 Materials Chemistry and Physics等。
引用本文:    
周长壮, 马琳, 崔庆贺, 梁金第. 颗粒增强铝基复合材料TLP连接综述与展望[J]. 材料导报, 2020, 34(Z1): 351-355.
ZHOU Changzhuang, MA Lin, CUI Qinghe, LIANG Jindi. A Review and Prospect of TLP Bonding Particle ReinforcedAluminum Matrix Composites. Materials Reports, 2020, 34(Z1): 351-355.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/351
1 Surappa M K.Sadhana,2003,28(1-2),319.
2 牛济泰,程东锋,高增,等.焊接学报,2019,40(3),155.
3 马宗义,肖伯律,等.中国材料进展,2010,29(4),8.
4 孔亚茹,郭强,张荻.材料导报:综述篇,2015,29(5),34.
5 潘利文,林维捐,唐景凡,等.材料导报,2016,30(专辑27),511.
6 姜瑞姣,李美霞.材料导报:综述篇,2015,29(4).138.
7 Youssef Y, El-Sayed M.International Review of Mechanical Engineering,2016,10(4),261.
8 Xu Z, Ma L, Yan J, et al.Composites Part A: Applied Science and Manufacturing,2012,43(3),407.
9 Sun J, Chen G, Wang B, et al.Journal of Materials Engineering and Performance,2019,28(5),2697.
10 Urena A, Escalera M D, Gil L.Composites Science and Technology,2000,60(4),613.
11 Zhang X P, Quan G F, Wei W E I.Composites Part A: Applied Science and Manufacturing,1999,30(6),823.
12 Prado R A, Murr L E, Shindo D J, et al.Scripta Materialia,2001,1(45),75.
13 Huseyin Uzun.Materials and Design,2007,28,144.
14 Zhang X P, Ye L, Mai Y W, et al.Composites Part A: Applied Science and Manufacturing,1999,30(12),1415.
15 Kenevisi M S, Khoie S M M. Materials & Design,2012,38,19.
16 Klehn R, Eagar T W. WRC Bulletin,1993,385,1.
17 Huang J H, Wan Y, Zhao H T, et al.Materials Science and Technology,2007,23(1),87.
18 Maity J, Pal T K, Maiti R.Journal of Materials Science,2010,45(13),3575.
19 Maity J, Pal T K.Journal of Materials Engineering and Performance,2012,21(7),1232.
20 Cooke K O, Khan T I, Oliver G D.Metallurgical and Materials Transactions B,2013,44(3),722.
21 Wang W, Fan D, Huang J, et al.Materials Letters,2015,143,237.
22 Lee C S, Li H, Chandel R S.Journal of Materials Processing Technology,1999,89-90,326.
23 Yan J C, Xu H B, Xu Z W, et al. Materials Science and Technology,2004,20,1.
24 Urena A, Gómez de Salazar J M, Escalera M D. Key Engineering Mate-rials,1995,104,523.
25 Huang Jihua, Dong Yueling, Wan Yun, et al. Journal of Materials Processing Technology,2007,190,312.
26 Li Z, Fearis W, North T H. Materials Science and Technology,1995,11(4),363.
27 Zhai Y, North T H. Journal of Materials Science,1997,32(6),1393.
28 陈铮.焊接学报,2001,22(5),27.
29 陈铮.焊接学报,2001,22(6),57.
30 Shao H, Wu A, Bao Y, et al. Ultrasonics sonochemistry,2017,37,561.
31 Lai Z, Xie R, Pan C, et al. Journal of Materials Science & Technology,2017,33(6),567.
32 Lai Z, Chen X, Pan C, et al. Materials Letters,2016,166,219.
33 Huang Z, Du H, Liu L, et al. Ultrasonics Sonochemistry,2018,43,101.
34 Wang Q, Chen X, Zhu L, et al. Ultrasonics Sonochemistry,2017,34,947.
35 Ma L, Xu Z, Zheng K, et al. Ultrasonics,2014,54(3),929.
36 Xu Z, Yan J, Chen W, et al. Materials Letters,2008,62(17-18),2615.
37 Xu Z, Ma L, Yan J, et al. Materials Chemistry and Physics,2014,148(3),824.
38 Leng X, Yang W, Zhang J, et al. Materials Science and Technology,2018,34(6),660.
39 张洋,闫久春.焊接学报,2009,30(3),89.
[1] 张昌青, 王维杰, 刘雄波, 金鑫, 秦卓, 荣琛. 铝/钢连续驱动摩擦焊接头力学性能及金属间化合物形态特征[J]. 材料导报, 2019, 33(16): 2740-2745.
[2] 蔺宏涛, 孟强, 王怡嵩, 王家毅, 张韵, 江海涛. 旋转速度对高强度钢Q&P980搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2020, 34(6): 6126-6131.
[3] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed