Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 345-350    
  金属与金属基复合材料 |
等通道挤压制备铝基细晶材料的研究进展
滕树满1, 滕海灏2
1 广西柳州钢铁集团有限公司,柳州 545002;
2 重庆大学材料科学与工程学院,重庆 400044
Development of ECAP Process to the Aluminum Matrix Fine Grain Material
TENG Shuman1, TENG Haihao2
1 Guangxi Liuzhou Iron & Steel Group Co.,Ltd, Liuzhou 545002, China;
2 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
下载:  全 文 ( PDF ) ( 10141KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,铝基材料因高的比强度和断裂韧性在工业领域获得广泛应用。剧烈塑性变形(SPD)加工是目前最有效的金属细晶化工艺,其中等通道挤压工艺(ECAP)因可稳定制备出具有良好综合性能的超细晶或纳米晶铝基材料而备受关注。本文综述了利用 ECAP 技术制备铝基细晶材料的相关研究进展,利用有限元模拟和实验综合探讨了挤压温度、摩擦系数、挤压速度、挤压路径、背压等工艺参数对铝基材料ECAP过程的影响,并通过分析国内外最新铝基材料ECAP工艺成果展望该工艺可能的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
滕树满
滕海灏
关键词:  剧烈塑性变形  等通道挤压  铝基细晶材料    
Abstract: In recent years, aluminum-matrix materials have been widely used in industry due to their high specific strength and fracture toughness. At pre-sent, severe plastic deformation (SPD) is the most effective process for fine crystallization of metals. Equal channel angel pressing (ECAP) has attracted much attention due to its stable preparation of ultrafine or nanocrystalline aluminum matrix materials with good comprehensive pro-perties. In this paper, the research progress of the preparation of aluminum-matrix fine-grained materials by ECAP technology is reviewed. The influence of process parameters such as extrusion temperature, friction coefficient, extrusion speed, extrusion path and back pressure on ECAP process of aluminum-matrix materials is comprehensively discussed by using finite element simulation and experiment. Through the analysis of the latest ECAP technology achievements at home and abroad, the possible development direction of this technology is prospected.
Key words:  severe-plastic-deformation    equal channel angel pressing (ECAP)    aluminum based fine grain material
                    发布日期:  2020-07-01
ZTFLH:  TG146.2  
作者简介:  滕树满,教授级高级工程师,1988年毕业于武汉钢铁学院(现武汉科技大学)。以第一作者在国内外学术期刊上发表论文15篇,国家发明专利17项。研究方向为金属材料冶炼及加工工艺优化,并参与多项省市重点项目建设与改造;滕海灏,2019年毕业于吉林大学材料科学与工程学院,获得工学学士。现为重庆大学材料科学与工程学院硕士研究生,研究方向为:金属塑性成型模拟技术,模具的增材制造工艺。
引用本文:    
滕树满, 滕海灏. 等通道挤压制备铝基细晶材料的研究进展[J]. 材料导报, 2020, 34(Z1): 345-350.
TENG Shuman, TENG Haihao. Development of ECAP Process to the Aluminum Matrix Fine Grain Material. Materials Reports, 2020, 34(Z1): 345-350.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/345
1 韩宝军,徐洲.材料导报:综述篇,2010,24(1),99.
2 李萧,杨平.材料研究学报,2010,24(1),1.
3 李炳,陈建,王鑫,等.铸造技术,2011(5),122.
4 A. Hohenwarter. Materials Science & Engineering A Structural Materials Properties Microstructure & Processing,2015,626,80.
5 吴春凌,叶邦彦.热加工工艺,2009,38(22),88.
6 丁永根,王薄笑天,李萍,等.塑性工程学报,2017,24(2),149.
7 宋月鹏,陈苗苗,徐保岩,等.材料热处理学报,2017,38(2),105.
8 刘满平,王俊,蒋婷慧,等.中国有色金属学报,2014,24(6),1383.
9 Liu C Y,Zhang B,Yu P F,et al. Materials Science & Engineering A,2013,580,36.
10 Violetta Andreyachshenko. Materials Letters,2019,254(1),433.
11 Balasubramani S, PremKumar N. Materials Today,2019,16,1333.
12 Gan W M, Zheng M Y, Chang H, et al. Journal of Alloys and Compounds,2008,470(1),37.
13 王立忠,王经涛,等.中国有色金属学报,2004(7),1112.
14 张翔,王晓溪,等.锻压技术,2019,44(2),61.
15 杨晓明,杨林,刘腾,等.沈阳工业大学学报,2006(1),29.
16 刘冰.ECAP和热处理对CP-Ti和Ti-0.2Pd在模拟体液中耐腐蚀性的影响.硕士学位论文,南京航空航天大学,2015.
17 张欠欠.复合细化超细晶纯钛的低周疲劳行为.硕士学位论文,西安建筑科技大学,2018.
18 郭光辉,江静华,马爱斌,等.腐蚀与防护,2014,35(5),413.
19 杨西荣,赵西成,付文杰.材料导报:综述篇,2010,24(3),96.
20 金朝阳,殷凯,史伟伟,等.精密成形工程,2017,9(3),19.
21 张悦.典型金属的剧烈塑性变形与组织性能演变.硕士学位论文,南京理工大学,2010.
22 任倩玉.6082铝合金等通道转角挤压变形过程的数值模拟.硕士学位论文,西安理工大学,2019.
23 张忠明,姚祎,任倩玉,等.铸造技术,2017,38(12),2948.
24 Suh J, Victoria-Hernández J, Letzig D, et al. Materials Science & Engineering A,2016,669(4),159.
25 田佳,李建平,白亚平,等.材料热处理学报,2016,37(7),61.
26 陈娜,赵小莲.材料导报:综述篇,2012,26(8),124.
27 马勇,赵亚培,彭程,等.特种铸造及有色合金,2014,34(2),135.
28 张清龙,王军丽,章震威,等.热加工工艺,2018,47(1),33.
29 Raab G I, Soshnikova E P, Valiev R Z. Materials Science & Engineering A,2004,387,674.
30 卢苹苹,史庆南,唐广波,等.金属热处理,2014,39(5),74.
31 华睿,李萍,薛克敏,等.粉末冶金工业,2015,25(4),30.
32 Iwahashi Yoshinori, Wang Jingtao, Horita Zenji, et al. Scripta Materialia,1996,35(2),143.
33 丁雨田,赵珺媛,郭廷彪,等.热加工工艺,2016,45(19),140.
34 Stolyarov V V, Lapovok R, Brodova I G, et al. Materials Science and Engineering A,2003,357(1-2),159.
35 Segal V M. Materials Science & Engineering A (Structural Materials,, Properties,Microstructure and Processing),1995,197(2),157.
36 Ferdinand Dobeš, Michal Besterci, Beáta Ballóková, et al. Materials Science and Engineering, A,2012,532,567.
37 韩远飞,段宏强,吕维洁,等.复合材料学报,2015,32(1),1.
38 起华荣,史庆南,陶新姚,等.稀有金属材料与工程,2016,45(9),2317.
39 康志新,彭勇辉,桑静,等.金属学报,2009,45(9),1117.
40 魏伟,马志俊,魏坤霞,等.常州大学学报:自然科学版,2015,27(2),30.
41 肖潇.双向等通道制备超细晶6061铝合金的研究.硕士学位论文,昆明理工大学,2010.
42 魏帅虎,胡茂良,吉泽升,等.材料工程,2019,47(12),85.
43 Azar Mahdi Hasanzadeh,Sadri Bahareh,Nemati Alireza,et al. Nanomaterials (Basel, Switzerland),2019,9(8),1.
44 章震威,王军丽,张清龙,等.材料导报:综述篇,2017,31(1),116.
[1] 郭炜, 王德, 付远, 陆德平, 刘克明, 王渠东, 张利. 反复锻压剧烈塑性变形的有限元分析*[J]. CLDB, 2017, 31(8): 145-148.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed