Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 338-340    
  金属与金属基复合材料 |
大尺寸Al-Zn-Mg-Cu铝合金铸锭均匀化工艺研究
晁代义1,2, 李昌龙1,2, 赵佳蕾1,2, 孙有政1,2, 赵志国1,2, 霍艳1, 吕正风1,2
1 山东南山铝业股份有限公司,龙口 265713;
2 国家铝合金压力加工工程技术研究中心,龙口 265713
Investigation on Homogenization Process of Large Size of Al-Zn-Mg-CuAluminum Alloy Ingot
CHAO Daiyi1,2, LI Changlong1,2, ZHAO Jialei1,2, SUN Youzheng1,2,ZHAO Zhiguo1,2, HUO Yan1, LYU Zhengfeng1,2
1 Shandong Nanshan Aluminum Co., Ltd., Longkou 265713, China;
2 National Engineering Research Center for Plastic Working of Aluminium Alloys, Longkou 265713, China
下载:  全 文 ( PDF ) ( 6448KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了解决生产过程中大尺寸Al-Zn-Mg-Cu合金铸锭的均匀化问题,利用金相分析、热分析、扫描电镜和透射电镜观察等方法, 研究了不同均匀化工艺对Al-Zn-Mg-Cu合金超大铸锭组织及过烧现象的影响。研究结果表明:合金铸锭在420 ℃均匀化4 h后,基体中析出了大量弥散分布的Al3Zr相,继续提高温度,合金铸锭在475 ℃均匀化时发生了过烧现象。 经470 ℃/8 h均匀化后合金的低熔点峰值向高温方向移动,枝晶组织以及富Zn、Mg相基本消失,能谱显示残留第二相主要由富Cu、Mg相和富Cu、Fe相组成,过烧温度达到480 ℃。为进一步减少富Cu、Mg相的影响,继续提高温度到478 ℃时,未发现过烧现象,第二相含量进一步减少。本研究确定了Al-Zn-Mg-Cu合金超大铸锭的均匀化温度为420 ℃/4 h+470 ℃/8 h+478 ℃/12 h,此时铸锭未出现过烧现象,第二相含量明显减少。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
晁代义
李昌龙
赵佳蕾
孙有政
赵志国
霍艳
吕正风
关键词:  Al-Zn-Mg-Cu铝合金  均匀化工艺  铸锭  过烧    
Abstract: In order to solve the homogenization issues of the large size Al-Zn-Mg-Cu alloy ingot, the effect of homogenization process on the microstructure and over-burning of Al-Zn-Mg-Cu alloy large ingot was studied by using OM, DSC, SEM and TEM analysis methods. The results showed that: a large number of dispersed Al3Zr phase was precipitated in the matrix after homogenized at 420 ℃ for 4 h, while the ingot was over-burned after increasing the temperature up to 475 ℃. After the alloy was homogenized at 470 ℃/8 h, the peak of the low melting point of the alloy moved to the high temperature direction, the dendritic structure in the alloy basically disappeared, and the Zn-rich and Mg-rich phases disappeared, the EDS test showed that the alloy mainly consisted of Cu-rich, Mg-rich and Cu-rich and Fe phases, and the over-burning temperature reached 480 ℃. In order to further reduce the influence of Cu-rich and Mg-rich phases, the temperature was further increased to 478 ℃ on the basis of 470 ℃ homogenization, no over-burning was found and the content of the second phase was further reduced. In this paper, the homogenization tempe-rature of Al-Zn-Mg-Cu alloy large ingots was determined to be 420 ℃/4 h+470 ℃/8 h+478 ℃/12 h, at this time the ingot had no over-burned and the second phase content decreased obviously.
Key words:  Al-Zn-Mg-Cu aluminum alloy    homogenization process    ingot casting    over-burning
                    发布日期:  2020-07-01
ZTFLH:  TG142.71  
作者简介:  晁代义,2013年6月毕业于烟台大学,获得工学硕士学位。2013年9月到2017年3月于哈尔滨工业大学材料科学与工程学院攻读博士学位。主要从事高强铝合金热处理及变形工艺研究以及金属材料失效分析。目前担任中国机械工程协会失效分析分会失效分析专家;孙有政,2017年1月毕业于东北大学材料科学与工程学院,获得博士学位。目前为南山集团工作站在站博士后,兼任南山铝业研究院航空材料研究室主任,主要从事高性能航空铝合金的研发与认证工作。
引用本文:    
晁代义, 李昌龙, 赵佳蕾, 孙有政, 赵志国, 霍艳, 吕正风. 大尺寸Al-Zn-Mg-Cu铝合金铸锭均匀化工艺研究[J]. 材料导报, 2020, 34(Z1): 338-340.
CHAO Daiyi, LI Changlong, ZHAO Jialei, SUN Youzheng,ZHAO Zhiguo, HUO Yan, LYU Zhengfeng. Investigation on Homogenization Process of Large Size of Al-Zn-Mg-CuAluminum Alloy Ingot. Materials Reports, 2020, 34(Z1): 338-340.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/338
1 Dursun T D, Soutis C. Materials & Design,2014,56,862.
2 方华婵,陈康华,巢宏.粉末冶金材料科学与工程,2009,14(6),352.
3 晁代义,孙有政.材料导报,2019,33(S2),398.
4 杨剑冰,庞兴志,胡治流.广西大学学报(自然科学版),2019,44(3),899.
5 刘园.高强耐蚀7050铝合金成分优化与时效行为研究.硕士学位论文,哈尔滨工业大学,2016.
6 冯丹艳.热加工工艺,2020(10),30.
7 刘守法,王晋鹏,李凡国.金属热处理,2018,43(9),27.
8 Chen K H, Fang H C. Materials Science Engineering A,2008,497(1-2),426.
9 Kai W, Xiong B Q, Fan Y Q. Rare Metals,2018,37(5),376.
[1] 焦慧彬, 陈善达, 陈送义, 陈康华. Mn和Zr对Al-Zn-Mg-Cu铝合金各向异性的影响[J]. 材料导报, 2018, 32(6): 937-942.
[2] 苏文佳, 牛文清, 齐小方, 李琛, 王军锋. 定向凝固法多晶硅杂质控制数值模拟概述[J]. 《材料导报》期刊社, 2018, 32(11): 1795-1805.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed