Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 128-131    
  无机非金属及其复合材料 |
原位反应制备陶瓷基复合相变材料及其工艺研究
杨波, 王启扬, 杨肖, 杨冬梅
南瑞集团(国网电力科学研究院)有限公司,南京 211100
Preparation and Technology of Ceramic-based Composite Phase ChangeMaterials by In-situ Reaction
YANG Bo, WANG Qiyang, YANG Xiao, YANG Dongmei
NARI Group Corporation (State Grid Electric Power Research Institute), Nanjing 211100, China
下载:  全 文 ( PDF ) ( 5214KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对熔融盐相变材料成型难、导热低的问题,设计采用微米级氮化铝原位反应的方法制备陶瓷基导热骨架,以此来吸附熔融盐,形成陶瓷基复合相变材料。研究了加水量及成型压力对该复合相变材料的性能影响,确定了最佳加水量为15%,最佳成型压力为30 MPa。分析SEM照片发现,原位反应生成的水解氧化铝具有花簇状结构,能够吸附复合盐,维持结构不塌陷。TG-DSC及导热测试表明,该复合相变材料具有182.4 J/g的相变焓和4.928 W/(m·K)的导热系数。在50次循环后,复合相变材料焓值几乎无衰减,具有很好的循环稳定性,其优异的性能归因于原位反应生成的陶瓷基导热骨架。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨波
王启扬
杨肖
杨冬梅
关键词:  储热  微米氮化铝  导热骨架  原位反应  循环稳定性    
Abstract: In order to solve the problem of difficult forming and low heat conduction of molten salt phase change materials, a method of in-situ reaction of micron aluminum nitride was designed to fabricate ceramic-based thermal conduction framework, which can absorb molten salt and form the ceramic-based composite phase change materials (CPCMs). The effects of water content and forming pressure on the properties of CPCMs were studied, which shows the optimum water addition of 15%, the best molding pressure of 30 MPa. Hydrolytic alumina (h-Al2O3) formed by in-situ reaction is found a flower like structure in SEM photos, which can absorb composite salts and maintain the structure without collapse. TG-DSC and thermal conductivity tests illustrate that the CPCMs have a 182.4 J/g phase change enthalpy and a 4.928 W/(m·K) thermal conductivity. After 50 cycles, there is almost no attenuation on the enthalpy of CPCMs, which possess good cycle stability. Their excellent properties are attri-buted to the ceramic-based thermal conduction framework formed by in-situ reaction.
Key words:  thermal energy storage    micron AlN    thermal conduction framework    in-situ reaction    cycle stability
                    发布日期:  2020-07-01
ZTFLH:  TQ12  
  TB32  
基金资助: 国家重点研发计划(2018YFB0905000)
作者简介:  杨波,材料学硕士学位,工程师。曾参与国家重点研发计划、国家自然科学基金、国家电网公司科技项目等研究工作。以第一作者身份在国内外学术期刊上发表论文8篇,申请专利10余项,其中授权3项。目前就职于南瑞集团有限公司研究院,工作重点是相变储热机理研究及高性能相变储热材料开发。
引用本文:    
杨波, 王启扬, 杨肖, 杨冬梅. 原位反应制备陶瓷基复合相变材料及其工艺研究[J]. 材料导报, 2020, 34(Z1): 128-131.
YANG Bo, WANG Qiyang, YANG Xiao, YANG Dongmei. Preparation and Technology of Ceramic-based Composite Phase ChangeMaterials by In-situ Reaction. Materials Reports, 2020, 34(Z1): 128-131.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/128
1 Liu X, Jenkins N, Wu J, et al. Energy Procedia,2014,61,155.
2 Wei H, Xie X, Li X, et al. Applied Energy,2016,178,616.
3 Qiu Z, Ma X, Li P, et al. Renewable & Sustainable Energy Reviews,2017,77,246.
4 Da Cunha J P, Eames P. Applied Energy,2016,177,227.
5 Lameck N, Tunde B, Geoffrey J, et al. Renewable & Sustainable Energy Reviews,2017,75,157.
6 Lin Y X, Zhu C Q, Alva G, et al. Applied Energy,2018,228,1801.
7 Liu C, Li F, Ma L P, et al. Advanced Materials,2010,22(8),E28.
8 Sharma A, Tyagi V V, Chen C R, et al. Renewable & Sustainable Energy Reviews,2009,13(2),318.
9 Fang Y T, Zou T, Liang X H, et al. ACS Sustainable Chemistry & Engineering,2017,5(4),3074.
10 Ge Z, Li Y, Li D, et al. Particuology,2014,15,2.
11 Kourkova L, Sadovska G. Thermochimica Acta,2007,452(1),80.
12 Wu Y T, Ren N, Wang T, et al. Solar Energy,2011,85(9),1957.
13 Ren N, Wu Y T, Wang T, et al. Journal of Thermal Analysis and Calorimetry,2011,104(3),1201.
14 Guillot S, Faik A, Rakhmatullin A, et al. Applied Energy,2012,94,174.
15 Wu Z, Zhao C, Gu Q. CIESC Journal,2012,63,119.
16 Ye F, Ge Z, Ding Y, et al. Particuology,2014,15,56.
17 Sang L, Li F, Xu Y. Solar Energy,2019,180,1.
18 李传,李琦,姜竹,等.储能科学与技术,2017,6(4),655.
19 Pincemin S, Olives R, Py X, et al. Solar Energy Materials & Solar Cells,2008,92(6),603.
20 Li C, Li Q, Ding Y. Renewable Energy,2019,140,140.
[1] 王启扬, 杨波. 碳酸盐基常固态复合相变材料的制备与性能研究[J]. 材料导报, 2020, 34(Z1): 137-139.
[2] 赵光伟, 陈健, 丁翀, 方东, 叶永盛, 叶喜葱. 冷速与凝固路径对Al-Cu-Si合金相变储热性能的影响[J]. 材料导报, 2020, 34(Z1): 328-333.
[3] 胡厅, 万红, 华叶, 龚瑾瑜, 陈兴宇. 石墨表面TiC梯度涂层的制备及结构调制[J]. 材料导报, 2019, 33(z1): 74-77.
[4] 陈丽萍, 蔡亮, 李光华, 周强. 基于CiteSpace的储热技术研究进展与趋势[J]. 材料导报, 2019, 33(9): 1505-1511.
[5] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[6] 闫霆, 王文欢, 王如竹. 化学吸附储热技术的研究现状及进展[J]. 材料导报, 2018, 32(23): 4107-4115.
[7] 张冠群,许州,刘建雄,杨艳蓉,刘成,程琪,于晓华. 二次水热法制备鸟巢状TiO2/Co3O4纳米结构及其锂电性能*[J]. 材料导报编辑部, 2017, 31(22): 5-9.
[8] 王研,怯喜周,王晓璐,钱炜,赵玉涛. Er对原位ZrB2/A356.2复合材料组织与性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 107-110.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed