Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 8-15    
  无机非金属及其复合材料 |
黑色二氧化钛纳米材料研究进展
张甄1,2, 王宝冬1, 徐文强1, 秦绍东1, 孙琦1
1 北京低碳清洁能源研究所,北京 102209
2 中国科学院大连化学物理研究所,大连 116023
Research Progress on Black Titanium Dioxide Nanomaterials
ZHANG Zhen1,2, WANG Baodong1, XU Wenqiang1, QIN Shaodong1, SUN Qi1
1 National Institute of Clear-and-Low-Carbon Energy, Beijing 102209
2 Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023
下载:  全 文 ( PDF ) ( 6719KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 相较于普通的TiO2纳米材料,黑色TiO2纳米材料具有独特的晶体核/非晶核壳结构。该材料通过引入晶格缺陷改善TiO2的晶体结构来优化其电子能级结构,缩短禁带宽度,改善光学性能,其光响应范围从紫外区域扩展到红外区域,使得黑色TiO2纳米材料在能源和环境领域有着广泛的应用。本文主要介绍了近年来黑色TiO2纳米材料的性质、制备方法、改性方式、形貌控制、结构设计及以黑色TiO2为基体改性材料的催化原理,最后对黑色TiO2纳米材料的发展方向及实际应用前景(如在光降解有机污染物、光解水、燃料电池及光电化学传感器等方面)进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张甄
王宝冬
徐文强
秦绍东
孙琦
关键词:  黑色TiO2  纳米材料  光学性能    
Abstract: Compared with the normal white TiO2 nanomaterials, the black TiO2 nanomaterials possess a unique crystalline core-amorphous shell structure and can boost its visible and infrared light absorption by band structure engineering. Improving the optical absorption of black TiO2 nanomaterials have attracted tremendous interest due to their applications in energy field and environmental pollution removal. The current review focuses on the various fabrication methods for black TiO2 nanomaterials, their morphological variations, structure along with their various chemical/physical properties, photocatalytic reaction mechanism and applications to environmental and technological fields such as photodegradation of organic pollutants, photocatalytic water splitting, dye sensitized solar cells, batteries, super capacitors and photothermal therapy.
Key words:  black TiO2    nanomaterials    optical absorption
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  O643  
基金资助: 863项目 (2012AA06A115)
作者简介:  张甄,2018年1月毕业于天津大学,获得工学博士学位。现为北京低碳清洁能源研究所在站博士后,在孙琦教授的指导下进行研究,主要从事光电催化CO2转化催化剂的研发。孙琦,北京低碳清洁能源研究所高级研究员,“千人计划”专家,煤化工研发中心主任。主要从事石油化工、煤炭化工的催化过程以及环境催化方面的研究,并在石油化工、煤炭化工、炼油和环境治理等领域取得显著成就。sunqi@nicenergy.com
引用本文:    
张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
ZHANG Zhen, WANG Baodong, XU Wenqiang, QIN Shaodong, SUN Qi. Research Progress on Black Titanium Dioxide Nanomaterials. Materials Reports, 2019, 33(z1): 8-15.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/8
1 Fujishima A, Honda K. Nature,1972,238(5358),37.
2 Fujishima A, Zhang X. Comptes Rendus Chimie,2006,9(5),750.
3 Konstantinou I K, Albanis T A. Applied Catalysis B: Environmental,2004,49(1),1.
4 Liqiang J, Xiaojun S, Jing S, et al. Solar Energy Materials and Solar Cells,2003,79(2),133.
5 Nakata K, Fujishima A. Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2012,13(3),169
6 Tryk D A, Fujishima A, Honda K. Electrochimica Acta,2000,45(15),2363.
7 Schneider J, Matsuoka M, Takeuchi M, et al. Chemical Reviews,2014,114(19),9919.
8 Dette C, Pérez-Osorio M A, Kley C S, et al. Nano Letters,2014,14(11),6533.
9 Chen X, Li C, Grätzel M, et al. Chemical Society Reviews,2012,41(23),7909.
10 Zeng Y, Xue Y, Long L, et al. Water, Air, & Soil Pollution,2019,230(2),50.
11 Ghosh R, Hara Y, Alibabaei L, et al. ACS Applied Materials & Interfaces,2012,4(9),4566.
12 Inturi S N R, Boningari T, Suidan M, et al. The Journal of Physical Chemistry C,2013,118(1),231.
13 Hamedani H A, Allam N K, Garmestani H, et al. The Journal of Physical Chemistry C,2011,115(27),13480.
14 Dukes F M, Iuppa E, Meyer B, et al.Langmuir,2012,28(49),16933.
15 Roberts K G, Varela M, Rashkeev S, et al. Physical Review B,2008,78(1),014409.
16 Liu B, Chen H M, Liu C, et al. Journal of the American Chemical Society,2013,135(27),9995.
17 Mikulas T, Fang Z, Gole J L, et al. Chemical Physics Letters,2012,539(27),58.
18 Likodimos V, Han C, Pelaez M, et al. Industrial & Engineering Chemistry Research,2013,52(39),13957.
19 Hoang S, Guo S, Hahn N T, et al. Nano Letters,2011,12(1),26.
20 Zhang H, Liang Y, Wu X, et al. Materials Research Bulletin,2012,47(9),2188.
21 Jac′imovic′ J, Gaal R, Magrez A, et al. Applied Physics Letters,2013,102(17),172108.
22 Yan C, Yi W, Yuan H, et al. Environmental Progress & Sustainable Ene-rgy,2014,33(2),419.
23 Chen X, Liu L, Yu P Y, et al.Science,2011,331,746.
24 Lu H, Zhao B, Pan R, et al. RSC Advances,2014,4(3),1128.
25 Wei W, Yaru N, Chunhua L, et al. RSC Advances,2012,2(22),8286.
26 Wang Z, Yang C, Lin T, et al. Energy & Environmental Science,2013,6(10),3007.
27 Lu Z, Yip C T, Wang L, et al. Chem Plus Chem,2012,77(11),991.
28 Zeng L, Song W, Li M, et al. Applied Catalysis B: Environmental,2014,147,490.
29 Wang G, Wang H, Ling Y, et al. Nano Letters,2011,11(7),3026.
30 Zhao Z, Tan H, Zhao H, et al.Chemical Communications,2014,50(21),2755.
31 Dong J, Han J, Liu Y, et al. ACS Applied Materials & Interfaces,2014,6(3),1385.
32 Pesci F M, Wang G, Klug D R, et al.The Journal of Physical Chemistry C,2013,117(48),25837.
33 Zhu G, Lin T, Lü X, et al. Journal of Materials Chemistry A,2013,1(34),9650.
34 Lu X, Wang G, Zhai T, et al. Nano Letters,2012,12(3),1690.
35 Wei W, Yaru N, Chunhua L, et al. RSC Advances,2012,2(22),8286.
36 Li H, Chen Z, Tsang C K, et al. Journal of Materials Chemistry A,2014,2(1),229.
37 Aschauer U, Selloni A. Physical Chemistry Chemical Physics,2012,14(48),16595.
38 Lu J, Dai Y, Jin H, et al. Physical Chemistry Chemical Physics,2011,13(40),18063.
39 Liu L, Peter Y Y, Chen X, et al. Physical Review Letters,2013,111(6),065505.
40 Liu N, Schneider C, Freitag D, et al. Nano Letters,2014,14(6),3309.
41 An H R, Park S Y, Kim H, et al. Scientific Reports,2016,6,29683.
42 Tang F, Li M, Gao C, et al. Applied Catalysis B: Environmental,2014,148,339.
43 Yu X, Kim B, Kim YK. ACS Catalysis, 2013,3,2479.
44 Qiu J, Li S, Gray E, et al. Journal of Physical Chemistry C,2014,118,8824.
45 Sasan K, Zuo F, Wang Y, et al.Nanoscale2015,7,13369.
46 Ren R, Wen Z, Cui S, et al. Scientific Reports,2015,5,10714.
47 Wang Z, Yang C, Lin T, et al. Energy & Environmental Science,2013,6(10),3007.
48 Zhu G, Lin T, Lyu X, et al. Journal of Materials Chemistry A,2013,1(34),9650.
49 Cui H, Zhao W, Yang C, et al. Journal of Materials Chemistry A,2014,2(23),8612.
50 Lin T, Yang C, Wang Z, et al. Energy & Environmental Science,2014,7(3),967.
51 Kang Q, Cao J, Zhang Y, et al. Journal of Materials Chemistry A,2013,1(18),5766.
52 Zhang X Q, Chen J B, Wang C W, et al. Nanotechnology2015,26(17),175705
53 Liu X, Gao S, Xu H, et al. Nanoscale,2013,5(5),1870.
54 Xin X, Xu T, Wang L, et al. Scientific Reports,2016,6,23684.
55 Pei Z, Ding L, Lin H, et al. Journal of Materials Chemistry A,2013,1(35),10099.
56 Yang Y, Liao J, Li Y, et al. RSC Advances,2016,6(52),46871.
57 Kim C, Kim S, Hong S P, et al. Physical Chemistry Chemical Physics,2016,18(21),14370.
58 Yang Y, Hoffmann M R. Environmental Science & Technology,2016,50(21),11888.
59 Kim C, Kim S, Lee J, et al. ACS Applied Materials & Interfaces,2015,7(14),7486.
60 Kim C, Kim S, Choi J, et al. Electrochemical Acta,2014,141,113.
61 Dong J, Han J, Liu Y, et al. ACS Applied Materials & Interfaces,2014,6(3),1385.
62 Fan C, Chen C, Wang J, et al.Scientific Reports,2015,5,11712.
63 Chen X, Zhao D, Liu K, et al. ACS Applied Materials & Interfaces,2015,7(29),16070.
64 Pu S, Zhu R, Ma H, et al. Applied Catalysis B: Environmental,2017,218,208.
65 Li P, Xue L, Li Y, et al. Materials Letters,2017,207,217.
66 Barrocas B, Entradas T J, Nunes C D, et al. Applied Catalysis B: Environmental,2017,218,709.
67 Luan X, Wang Y. Materials Science in Semiconductor Processing,2014,25,43.
68 Hong J, Meysami S S, Babenko V, et al. Applied Catalysis B: Environmental,2017,218,267.
69 Cui W, Xue D, Yuan X, et al. Applied Surface Science,2017,411,105.
70 Bai H, Liu Z, Sun D D. Journal of the American Ceramic Society,2013,96(3),942.
71 Zhang W, Xiao X, Zheng L, et al. The Canadian Journal of Chemical Engineering,2015,93(9),1594.
72 Zhang Z, Xiao F, Guo Y, et al. ACS Applied Materials & Interfaces,2013,5(6),2227.
73 Vaiano V, Sacco O, Sannino D, et al. Journal of Chemical Technology and Biotechnology,2014,89(8),1175.
74 Oberdörster G, Ferin J, Gelein R, et al. Environmental Health Perspectives,1992,97,193.
75 Oberdörster G, Ferin J, Lehnert B E. Environmental Health Perspectives,1994,102(Suppl 5),173.
76 Cheng K, Wan J, Liang K. Journal of the American Ceramic Society,1999,82(5),1212.
77 Matsunaga T, Tomoda R, Nakajima T, et al. FEMS Microbiology Letters,1985,29(1-2),211.
78 Chen H, Chen S, Quan X, et al. The Journal of Physical Chemistry C,2008,112(25),9285.
79 Cozzoli P D, Fanizza E, Comparelli R, et al. The Journal of Physical Chemistry B,2004,108(28),9623.
80 Liu N, Schneider C, Freitag D, et al. Nano Letters,2014,14(6),3309.
81 Yu X, Kim B, Kim Y K. ACS Catalysis,2013,3(11),2479.
82 Zhang C, Yu H, Li Y, et al. ChemSusChem,2013,6(4),659.
83 Lin T, Yang C, Wang Z, et al. Energy & Environmental Science,2014,7(3),967.
84 Kako T, Umezawa N, Xie K, et al. Journal of Materials Science,2013,48(1),108.
85 Harris L A, Schumacher R. Journal of the Electrochemical Society,1980,127(5),1186.
86 Liu H, Ma H T, Li X Z, et al. Chemosphere,2003,50(1),39.
87 Liu N, Häublein V, Zhou X, et al. Nano Letters,2015,15(10),6815.
88 Zhi J, Yang C, Lin T, et al. Nanoscale,2016,8(7),4054.
[1] 张燕. 一步法制备无表面修饰剂花状金纳米颗粒及其表面增强拉曼散射性能研究[J]. 材料导报, 2019, 33(z1): 314-317.
[2] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[3] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[4] 杨焜, 王春来, 丁晟, 刘长军, 田丰, 李钒. 荧光碳量子点:合成、特性及在肿瘤治疗中的应用[J]. 材料导报, 2019, 33(9): 1475-1482.
[5] 叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 直流电弧等离子体法制备纳米材料的研究进展[J]. 材料导报, 2019, 33(7): 1089-1098.
[6] 阮子林, 郝振亮, 张辉, 卢建臣, 蔡金明. Cu2-xS(0≤x≤1)化合物:制备技术、物理特性及应用[J]. 材料导报, 2019, 33(7): 1141-1155.
[7] 陈娟, 江琦. 自组装技术在特殊形貌无机纳米材料制备中的作用[J]. 材料导报, 2019, 33(3): 454-461.
[8] 安文,马建中,徐群娜. 功能型酪素基复合材料的研究进展[J]. 材料导报, 2019, 33(15): 2602-2609.
[9] 张腾, 唐天宇, 侯仰龙. 面向锂硫电池的高负载量碳硫复合正极材料研究进展[J]. 材料导报, 2019, 33(1): 90-102.
[10] 刘云子,张伟,宋占永. 金属纳米颗粒导电墨水制备与后处理工艺的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 391-397.
[11] 管庆顺,李建,宋如愿,徐朝阳,吴伟兵,景宜,戴红旗,房桂干. 基于纳米材料的气凝胶制备及应用[J]. 《材料导报》期刊社, 2018, 32(3): 384-390.
[12] 宋晔, 缪远玲, 孟月东, 王奇. 利用等离子体技术制备和改性碳基纳米材料的研究进展[J]. 材料导报, 2018, 32(19): 3295-3303.
[13] 董奇志, 万汉生, 曾文霞, 余淑敏, 郭灿城, 余刚. 改性碳纳米材料在低温燃料电池中的应用*[J]. CLDB, 2017, 31(9): 81-89.
[14] 杨平军,袁剑民,何莉萍. 碳纤维表面改性及其对碳纤维/树脂界面影响的研究进展[J]. 《材料导报》期刊社, 2017, 31(7): 129-136.
[15] 赵吉鑫,乔玉林. 液相脉冲激光轰击石墨制备碳纳米材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 32-37.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed