Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 234-238    
  无机非金属及其复合材料 |
不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究
候昱灼, 廖洪强, 高宏宇, 程芳琴
山西大学资源与环境工程研究所,国家环境保护煤炭废弃物资源化高效利用技术重点实验室,煤电污染控制及废弃物资源化利用山西省重点实验室,山西低附加值煤基资源高值利用协同创新中心,太原 030006
Study on Roaming Process and Roam Properties of Organic-Inorganic Composite Under Different Conditions
HOU Yuzhuo, LIAO Hongqiang, GAO Hongyu, CHENG Fangqin
National Key Laboratory of Environmentally Friendly Coal Waste Recycling and Efficient Utilization Technology, Shanxi Provincial Key Laboratory of Coal Pollution Control and Waste Recycling, Shanxi Collaborative Innovation Center for High Value Utilization of Low Value-added Coal-Based Resources, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006
下载:  全 文 ( PDF ) ( 2765KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 实验考察了在不同发泡剂掺量、水胶比及发泡温度下,添加聚苯乙烯泡沫颗粒前后混凝土发泡过程及其发泡体绝干密度和抗压强度的影响规律。结果表明,随着发泡剂、水胶比增大及发泡温度升高,浆体发泡倍率整体呈现先增大后减小的变化规律,而发泡体的绝干密度和抗压强度则呈现与发泡倍率相反的变化规律,即先减小后增大。添加泡沫塑料颗粒前,发泡温度对浆体绝干密度的影响程度较发泡剂掺量和水胶比的影响程度大,而水胶比对发泡体抗压强度的影响程度较发泡温度和发泡剂掺量的影响程度大。添加聚苯乙烯泡沫颗粒后,浆体的发泡倍率明显降低,发泡温度对浆体的绝干密度影响程度较发泡剂掺量和水胶比的影响程度大;发泡剂、发泡温度和水胶比对发泡体的抗压强度的影响程度均较大。在较低发泡剂掺量(3‰~5 ‰)、较高水胶比(0.46)和较低发泡温度(30~40 ℃)条件下,添加泡沫塑料颗粒后,在降低发泡体绝干密度的同时,可提高发泡体的抗压强度,制备出较低绝干密度和较高抗压强度的有机-无机复合发泡体制品。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
候昱灼
廖洪强
高宏宇
程芳琴
关键词:  发泡混凝土  有机-无机复合  发泡工艺  绝干密度  抗压强度    
Abstract: The effects of foaming agent addition, water-cement ratio and foaming temperature on the foaming process, the dry density and compressive strength of the foamed body with polystyrene foam particles addition or not were investigated. The results showed that the slurry foaming ra-tio first increased and then decreased with the increase of foaming agent, water-cement ratio and foaming temperature, while the dry density and the compressive strength of the foam changed in the opposite trend simultaneously. Before adding foamed plastic particles, the foaming temperature was the main effect factor for the dry density of the foamed body, and the water-cement ratio was the main effect factor for the compressive strength of the foam. After the addition of polystyrene foam particles, the slurry foaming ratio reduced significantly, the foaming temperature was also the main effect factor for the dry density of the foamed body, while foaming agent addition, water-cement ratio and foaming temperature were the main effect factors for the compressive strength of the foam. The foamed body with lower dry density and higher compressive strength can be prepared by organic-inorganic composite foaming under the conditions of lower foaming agent content (3‰—5‰), higher water-cement ratio (0.46) and lower foaming temperature (30—40 ℃)
Key words:  foamed concrete    organic-inorganic composite    foaming process    absolute dry density    compressive strength
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  X78  
基金资助: 国家重点研发计划(2017YFC0703104); 山西省煤基重点科技攻关项目(MC2014-06); 山西省科技重大专项(MC2016-03)
作者简介:  候昱灼,2017年6月毕业于山西大学,获得本科学位。现为山西大学资源与环境工程研究所硕士研究生,在廖洪强教授的指导下进行研究。目前主要研究领域为低密度有机-无机复配保温材料。廖洪强,山西大学资源与环境工程研究所教授、硕士研究生导师。先在大型国有企业首钢集团能源环保产业事业部担任总工程师同时兼任北京首钢朗泽新能源科技有限公司总经理,后进入北京大学和山西大学从事节能环保与固废资源综合利用新技术开发与产业化推广应用工作10余年;承担过国家科技部支持的“863”课题,国家“十一五”科技支撑课题,国家“十二五”科技支撑课题,国家发改委支持的循环经济重大专项和国家低碳创新技术示范工程等科技攻关项目;申请国家专利101项,授权发明专利36项,发表有关学术论文78篇,取得10余项应用型科技成果,获得省部级以上科技成果奖励5项,并入选北京市“百千万人才工程”和“山西省学术技术带头人”称号。主要从事绿色建材方向的研究。liaohq@sxu.edu.cn
引用本文:    
候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
HOU Yuzhuo, LIAO Hongqiang, GAO Hongyu, CHENG Fangqin. Study on Roaming Process and Roam Properties of Organic-Inorganic Composite Under Different Conditions. Materials Reports, 2019, 33(z1): 234-238.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/234
1 秦璜, 潘志华, 吕钦刚. 新型建筑材料,2012(4),27.
2 Ma Y, Wang Y, Li K, et al. Journal of Building Materials,2017,20(3),426.
3 Jiang C C, Li G Z, Zhang S. Advanced Materials Research,2011,306-307,994.
4 吴迪, 赵洪凯. 科技视界,2016(27),156.
5 Lin J H, Chuang Y C, Huang C H, et al. Applied Mechanics & Mate-rials,2015,749,270.
6 许志中, 李铁东. 新型建筑材料,2011(7),89.
7 何小芳, 夏少旭, 刘玉飞, 等. 材料导报:综述篇,2012,26(4),149.
8 周冬冬, 廖洪强, 宋慧平,等. 硅酸盐通报,2017,36(7),2459.
9 Falliano D, Domenico D D, Ricciardi G, et al. Construction & Building Materials,2018,165,735.
10 崔可浩, 马保国. 硅酸盐学报,1992(2),123.
11 陈卫东,张国侠,刘媛春.新型建筑材料,2007,34(6),41.
[1] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[2] 杨凯, 张之璐, 杨永, 韩昊, 黄文聪, 朱效宏, 唐德莎, 李爽, 杨长辉. 复合激发剂对碱矿渣胶结材水化进程及早期性能的影响[J]. 材料导报, 2019, 33(14): 2326-2330.
[3] 胡明玉, 付超, 魏丽丽, 刘章君. 等钒铁渣复合物改性硅藻土制备高强耐水调湿材料[J]. 《材料导报》期刊社, 2018, 32(8): 1230-1235.
[4] 张洁, 张建建, 孙国文, 杨建明, 汤青青. 三种固废微粉对磷酸钾镁水泥浆体早期性能影响及作用机理[J]. 材料导报, 2018, 32(20): 3553-3561.
[5] 马宏强, 易成, 朱红光, 董作超, 陈宏宇, 王佳欣, 李德毅. 煤矸石集料混凝土抗压强度及耐久性能[J]. 《材料导报》期刊社, 2018, 32(14): 2390-2395.
[6] 张广泰, 田虎学, 李宝元, 张继飞, 王玉喜. 钢-聚丙烯混杂纤维混凝土的抗盐冻性能[J]. 《材料导报》期刊社, 2018, 32(14): 2396-2399.
[7] 姜玉丹,金祖权,陈永丰,范君峰. 高吸水树脂对混凝土水化及强度的影响[J]. 《材料导报》期刊社, 2017, 31(24): 40-44.
[8] 方 圆,陈 兵. 玻璃纤维对磷酸镁水泥砂浆力学性能的增强作用及机理[J]. 《材料导报》期刊社, 2017, 31(24): 6-9.
[9] 秦晓川, 孟少平, 涂永明. 高强混凝土材料细观冻融损伤与抗压强度的关系*[J]. 《材料导报》期刊社, 2017, 31(2): 117-120.
[10] 漆小鹏, 李文, 罗远方, 杨辉. 新型钇-羟基磷灰石骨水泥的制备及性能研究*[J]. CLDB, 2017, 31(13): 151-155.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed