Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 211-215    
  无机非金属及其复合材料 |
基于COMSOL®模拟材料孔隙率与导热系数的演变关系
丁杨1, 邓满宇1, 周双喜2, 王中平3, 董晶亮2, 魏永起3
1 浙江大学建筑工程学院, 杭州 310058
2 华东交通大学土木建筑学院,南昌 330013
3 同济大学材料科学与工程学院, 上海 201804
The Evolution Relation Between Materials’Porosity and Thermal Conductivity Based on the Simulation by COMSOL® Software
DING Yang1, DENG Mangyu1, ZHOU Shuangxi2, WANG Zhongping3, DONG Jingliang2, WEI Yongqi3
1 School of Architecture engineering, Zhejiang University, Hangzhou 310058
2 School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013
3 School of Materials Science and Engineering, Tongji University, Shanghai 201804
下载:  全 文 ( PDF ) ( 4867KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究材料不同孔隙率对其导热系数的影响,通过MATLAB建立随机分布模型,结合COMSOL®有限元软件和经典理论计算公式进行分析,得出:基于MATLAB随机生成代码能够呈现出材料孔隙率的变化,并且COMSOL®能够有效定性地计算出导热系数;Zimmerman模型计算出的导热系数与Campbell-Allen模型和COMSOL®相差较大, Campbell-Allen模型与COMSOL®计算结果较为吻合;COMSOL®计算得出的导热系数变化曲线是由凹函数与凸函数组成,出现这一现象是由于孔洞的出现使得传热路径发生了变化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁杨
邓满宇
周双喜
王中平
董晶亮
魏永起
关键词:  孔隙率  导热系数  COMSOL®  Campbell-Allen模型  Zimmerman模型    
Abstract: In order to study the effect of different porosity on thermal conductivity of materials, a random distribution model is established by MATLAB, and the analysis is made by COMSOL® finite element software and classical theoretical calculation formula. It is concluded that the random generated code based on MATLAB can show the change of material porosity, and COMSOL® can effectively calculate the thermal conductivity qualitatively; the thermal conductivity calculated by Zimmerman model is quite different from COMSOL® model and Campbell-Allen model, Campbell-Allen model is in good agreement with the results of COMSOL® calculation. The curve of thermal conductivity calculated by COMSOL® is composed of concave function and convex function. This phenomenon occurs because the occurrence of holes will lead to the change of heat transfer path, so that the change rate of thermal conductivity will change.
Key words:  porosity    thermal conductivity    COMSOL®    Campbell-Allen model    Zimmerman model
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TQ02  
  TU375  
基金资助: 国家重点研发项目(2016YFC0700807;2017YFC0504506;2017YFC0504503);国家青年基金项目(51708220);水利部黄土高原水土流失过程与控制重点实验室开放课题基金(201806)
作者简介:  丁杨,浙江大学博士研究生。主要研究方向为建筑节能与保温材料。董晶亮,华东交通大学讲师,主要研究方向是新型建筑材料及其应用。429146390@qq.com
引用本文:    
丁杨, 邓满宇, 周双喜, 王中平, 董晶亮, 魏永起. 基于COMSOL®模拟材料孔隙率与导热系数的演变关系[J]. 材料导报, 2019, 33(z1): 211-215.
DING Yang, DENG Mangyu, ZHOU Shuangxi, WANG Zhongping, DONG Jingliang, WEI Yongqi. The Evolution Relation Between Materials’Porosity and Thermal Conductivity Based on the Simulation by COMSOL® Software. Materials Reports, 2019, 33(z1): 211-215.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/211
1 黄政宇, 孙庆丰, 周志敏.硅酸盐通报,2013,32(9),1894.
2 杭美艳,杨冉.硅酸盐通报,2018,37(4),1480.
3 解悦, 李军, 卢忠远, 等.功能材料,2018,49(7),7215.
4 朱明, 王方刚, 张旭龙, 等.武汉理工大学学报,2013,35(3),20.
5 兰明章, 代丹丹, 陈智丰, 等. 硅酸盐通报,2016,35(2),518.
6 吴振飞, 张杰. 聚氨酯工业,2016,31(5),26.
7 周顺鄂, 卢忠远, 严云. 材料导报:研究篇,2009,23(3),69.
8 李翔宇, 赵霄龙, 郭向勇, 等.材料导报:研究篇,2011,25(10),146.
9 陈春, 钱春香, 许燕波.东南大学学报(自然科学版),2012,42(2),383.
10 徐蔚雯, 章学来, 华维三, 等.太阳能学报,2018(4),933.
11 丁杨, 周双喜, 黄神恩, 等.传感器与微系统,2018,37(9),112.
12 周双喜, 韩震, 魏星, 等.建筑材料学报,2018,21(3),351.
13 Campbell-Allen D . Magazine of Concrete Research,1963,15(43),39.
14 丁杨,周双喜,王中平,等.混凝土,2018(10),14.
15 Zimmerman R W .Journal of Petroleum Science and Engineering,1989,3(3),219.
[1] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[2] 卢林, 吴文恒, 龙倩蕾, 张亮, 张济山. 喷射成形工艺参数对沉积坯质量的影响[J]. 材料导报, 2019, 33(3): 390-394.
[3] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[4] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[5] 王同生, 李亚伟, 桑绍柏, 徐义彪, 王庆虎. 添加热氧化鳞片石墨对高炉炭砖显微结构和性能的影响[J]. 材料导报, 2019, 33(11): 1831-1835.
[6] 丁聪, 郭丽萍, 雷东移, 徐燕慧, 朱玉, 邓忠华. 轻质保温高延性水泥基复合材料的拉伸性能与耐久性能[J]. 材料导报, 2019, 33(10): 1652-1658.
[7] 刘自力, 林嘉伟, 罗扬, 任丽, 左建良. 表面活性剂协同超声分散制备还原氧化石墨烯@月桂酸-棕榈酸复合相变材料及其表征[J]. 材料导报, 2018, 32(24): 4381-4385.
[8] 吴其胜,陈宝锐,诸华军,闵治安. 热压制备改性石墨烯-水泥基复合材料:改善微观结构、导热性能和力学性能[J]. 《材料导报》期刊社, 2018, 32(10): 1701-1706.
[9] 张晨, 应国兵, 王乘, 王鹏举, 田宝娜, 韩建兴, 王香. 高孔隙率多孔氮化硅构件较高马赫数下流-热-固耦合力学特性分析*[J]. 《材料导报》期刊社, 2017, 31(4): 131-136.
[10] 马昆林, 贺炯煌, 龙广成, 党晗菲, 谢友均. 蒸养温度效应及其对水泥基材料热伤损的影响*[J]. 《材料导报》期刊社, 2017, 31(23): 171-176.
[11] 张新铭, 陈丹阳, 王花. 基于二维Voronoi模型的多孔泡沫金属导热性能模拟研究*[J]. 《材料导报》期刊社, 2017, 31(21): 135-138.
[12] 赵思勰,晏华,汪宏涛,李云涛,余荣升,杨健健. 月桂酸/膨胀珍珠岩复合相变材料的制备与热性能研究*[J]. 材料导报编辑部, 2017, 31(10): 107-111.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed