Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1701-1706    https://doi.org/10.11896/j.issn.1005-023X.2018.10.025
  材料研究 |
热压制备改性石墨烯-水泥基复合材料:改善微观结构、导热性能和力学性能
吴其胜1,陈宝锐2,诸华军1,闵治安3
1 盐城工学院材料工程学院,盐城 224051;
2 常州大学材料科学与工程学院,常州 213164;
3 北京化工大学材料科学与工程学院,北京 100029
Preparing Modified-graphene-reinforced Cement-based Composite Material by Hot-pressing Process for Microstructure, Thermal Conductivity and Mechanical Properties Amelioration
WU Qisheng1, CHEN Baorui2, ZHU Huajun1, MIN Zhian3
1 School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051;
2 School of Materials Science and Engineering, Changzhou University, Changzhou 213164;
3 College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029
下载:  全 文 ( PDF ) ( 4822KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用热压成型工艺制备了石墨烯-水泥基复合材料,研究了硅烷偶联剂和行星球磨时间对复合材料性能的影响。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、傅里叶变化红外光谱(FTIR)和氮吸附比表面积测定仪等对复合材料进行了微观分析。结果显示:当偶联剂和石墨烯掺量为1%时,复合材料导热系数和抗压强度分别达到3.132 3 W/(m·K)和54.9 MPa,相较于未使用偶联剂处理的样品,分别提高了42.07%和28.87%;球磨能提高石墨烯在复合材料中的分散性,当球磨时间为0.5 h、石墨烯掺量为1.5%、偶联剂含量为1%时,复合材料导热系数和抗压强度分别为3.687 2 W/(m·K)和57.4 MPa;微观形貌和孔结构分析表明,采用热压成型工艺制备的复合材料孔隙率更低,结构更为致密。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴其胜
陈宝锐
诸华军
闵治安
关键词:  热压成型工艺  水泥  石墨烯  孔隙率    
Abstract: Using silane coupling-agent-modified graphene, a series of graphene-reinforced cement-based composites (differing in coupling agent content and ball milling duration)were prepared by a hot-pressing process and the resultant composites’ perfor-mances were examined. X-ray diffraction(XRD), scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(FTIR)and N2 absorption BET surface area analyser were employed to study microstructure of the composite. The results showed that the combination of a 1% dosage of coupling agent and a 1% dosage graphene can achieve a thermal conductivity and a compressive strength of 3.132 3 W/(m·K)and 54.9 MPa (42.07% and 28.87% higher than the composite without coupling agent modification), respectively; the ball milling can improve the dispersibility of graphene in composite, and when the milling time, graphene dosage and coupling agent dosage are 0.5 h,1.5%,1% respectively, a reinforced cement-based composite with a thermal conductivity of 3.687 2 W/(m·K)and a compressive strength of 57.4 MPa can be obtained. The microstructure and pore structure analysis showed that the composite prepared by hot-pressing process has lower porosity and more dense structure than the blank sample.
Key words:  hot pressing process    cement    graphene    porosity
               出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51572234;51502259);住房城乡建设部资助项目(2015-K4-007)
通讯作者:  陈宝锐:男,1992年生,硕士研究生,研究方向为复合材料 E-mail:690083131@qq.com   
作者简介:  吴其胜:男,1965年生,博士,教授,研究方向为墙体材料、保温材料 E-mail:qishengwu@ycit.cn
引用本文:    
吴其胜,陈宝锐,诸华军,闵治安. 热压制备改性石墨烯-水泥基复合材料:改善微观结构、导热性能和力学性能[J]. 《材料导报》期刊社, 2018, 32(10): 1701-1706.
WU Qisheng, CHEN Baorui, ZHU Huajun, MIN Zhian. Preparing Modified-graphene-reinforced Cement-based Composite Material by Hot-pressing Process for Microstructure, Thermal Conductivity and Mechanical Properties Amelioration. Materials Reports, 2018, 32(10): 1701-1706.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.025  或          http://www.mater-rep.com/CN/Y2018/V32/I10/1701
1 Titchell I. Environmental degradation of macrodefect-free cements[J]. Journal of Materials Science,1991,26(5):1199.
2 Drabik M, Mojumdar S C, Galikova L. Changes of thermal events of macrodefect-free (MDF)cements due to the deterioration in the moist atmosphere [J]. Cement & Concrete Research,2001,31(31):743.
3 Zhao Q R, Cai C L, Shen G S. Preparation technology of high strength composite made with phenolic resin and high alumina cement[J]. China Concrete and Cement Products,2003(3):9(in Chinese).
赵清荣,蔡灿柳,沈贵松.酚醛树脂-高铝水泥高强复合材料配制技术[J].混凝土与水泥制品,2003(3):9.
4 Wang J D, Wu K R, Tan M H. Micrcostructure of phenol resin-high alumina cement based macro defect free composites[J]. Journal of Tongji University(Natural Science),1999(1):102(in Chinese).
王君达,吴科如,谈慕华.酚醛树脂-高铝水泥基无宏观缺陷材料的微结构[J].同济大学学报(自然科学版),1999(1):102.
5 吴其胜,朱哲誉.高强耐水型脱硫石膏板及其制备方法:中国,104944882A[P].2015-09-30.
6 Zhu Z Y, Wu Q S, Tang J, et al. Mechanical properties and microstructure of desulfurization gypsum modified by phenolic resin[J]. Journal of Materials Science & Energineering,2016,34(1):119(in Chinese).
朱哲誉,吴其胜,汤进,等.酚醛树脂改性脱硫石膏的力学性能[J].材料科学与工程学报,2016,34(1):119.
7 Jin T Y, Tian X S, Cui J, et al. Mechanical and electrical properties of carbon fiber powder-steel slag cement based composites[J]. Bulletin of the Chinses Ceramic Society,2015,34(12):3601(in Chinese).
金婷艳,田秀淑,崔健,等.碳纤维粉-钢渣水泥基复合材料的力学性能和导电性能研究[J].硅酸盐通报,2015,34(12):3601.
8 Han B, Zhang K, Yu X, et al. Electrical characteristics and pressure-sensitive response measurements of carboxyl MWNT/cement composites[J]. Cement & Concrete Composites,2012,34(6):794.
9 Lv S, Liu J, Sun T, et al. Effect of GO nanosheets on shapes of cement hydration crystals and their formation process[J]. Construction & Building Materials,2014,64(64):231.
10 Lv S, Ma Y, Qiu C, et al. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites[J]. Construction & Building Materials,2013,49(12):121.
11 Milev A, Wilson M, Kannangara G S K, et al. X-ray diffraction line profile analysis of nanocrystalline graphite[J]. Materials Chemistry & Physics,2008,111(2-3):346.
12 Peng L Q, Xie J H, Guo C, et al. Review of characterization methods of graphene[J]. Journal of Functional Materials,2013,44(21):3055(in Chinese).
彭黎琼,谢金花,郭超,等.石墨烯的表征方法[J].功能材料,2013,44(21):3055.
13 Xing Y L, Xu K, Liu Y H, et al. Research on the progress of high thermal conduction mechanism and heat transfer enhancement application of graphene[J]. Chemical Engineer,2015,29(5):54(in Chinese).
邢玉雷,徐克,刘艳辉,等.石墨烯高导热机理及其强化传热研究进展[J].化学工程师,2015,29(5):54.
14 Burger N, Laachachi A, Ferriol M, et al. Review of thermal conductivity in composites: Mechanisms, parameters and theory[J]. Progress in Polymer Science,2016,61:1.
[1] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[4] 丁杨, 邓满宇, 周双喜, 王中平, 董晶亮, 魏永起. 基于COMSOL®模拟材料孔隙率与导热系数的演变关系[J]. 材料导报, 2019, 33(z1): 211-215.
[5] 张景卫, 李地红, 高群, 于海洋, 代函函. 橡胶形态及分布对水泥制品抗冲击能力的影响[J]. 材料导报, 2019, 33(z1): 261-263.
[6] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[7] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[8] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[9] 陈庆, 王慧, 蒋正武, 朱合华, 马瑞. 基于中心粒子模型的超高性能水泥基材料水化进程模拟[J]. 材料导报, 2019, 33(8): 1312-1316.
[10] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[11] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[12] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[13] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[14] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[15] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed