Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (23): 171-176    https://doi.org/10.11896/j.issn.1005-023X.2017.023.025
  第一届先进胶凝材料研究与应用学术会议 |
蒸养温度效应及其对水泥基材料热伤损的影响*
马昆林, 贺炯煌, 龙广成, 党晗菲, 谢友均
中南大学土木工程学院,高速铁路建造技术国家工程实验室,长沙 410075
Steam-curing Temperature Effect and Its Influence on Heat Damage of Cement-based Material
MA Kunlin, HE Jionghuang, LONG Guangcheng, DANG Hanfei, XIE Youjun
School of Civil Engineering, Central South University, National Engineering Laboratory for Construction Technology of High Speed Railway, Changsha 410075
下载:  全 文 ( PDF ) ( 2001KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用温度传感器测试了水泥基材料在标养和蒸养条件下温度的变化,结合X射线衍射(XRD)、扫描电子显微镜(SEM)、热重分析(TGA)及压汞(MIP)等方法,研究了水化产物和微结构的变化。结果表明,蒸养中试件表层首先开始升温,升温结束时表层温度比内部高约30 ℃;随后内部升温超过表层,恒温3 h,内部温度比表层高约25 ℃。蒸养温度效应对水化产物的生成未产生较显著的影响,但对表层孔结构和微观形貌影响显著。蒸养结束时,试件表层的总孔隙率以及大于200 nm的有害孔比例分别是内部的1.22倍和10.3倍;继续标养至28 d时有效降低了总孔隙率,但大于200 nm的有害孔比例仍为标养试件的1.6倍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马昆林
贺炯煌
龙广成
党晗菲
谢友均
关键词:  蒸养混凝土  温度  微观结构  孔隙率  热伤损    
Abstract: The temperature change of cement-based material in moist-curing and steam-curing were measured by temperature sensors. The evolutions of hydration products and microstructure were investigated by means of XRD, SEM, TGA and MIP. Results show that in the steam-curing process, temperature of specimen surface increases first. At the end of temperature increasing, surface temperature is about 30 ℃ higher than the internal temperature. Afterwards, the internal temperature increasing exceeds the surface. Internal temperature is about 25 ℃ higher than surface after constant temperature(60 ℃) curing for 3 hours. The change of temperature and time exerts limited effects on the formation of hydration products, but it brings about remarkable influence on pore structure and microtopography on surface layer. At the end of steam-curing, the total porosity and harmful pore ratio with diameter larger than 200 nm in surface layer are 1.22 and 10.3 times of that of internal structure. The total porosity is reduced effectively in moist-curing at 28 d. However, the pore ratio with diameter greater than 200 nm is still 1.6 times of moist-curing specimens.
Key words:  steam-curing concrete    temperature    microstructure    porosity    heat damage
               出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU528  
基金资助: *高铁联合基金(U1534207); 中南大学中央高校基本科研业务费专项资金(2017zzts751)
作者简介:  马昆林:男,1976年生,博士,副教授,主要研究方向为先进水泥基材料及混凝土耐久性 E-mail: makunlin@csu.edu.cn
引用本文:    
马昆林, 贺炯煌, 龙广成, 党晗菲, 谢友均. 蒸养温度效应及其对水泥基材料热伤损的影响*[J]. 《材料导报》期刊社, 2017, 31(23): 171-176.
MA Kunlin, HE Jionghuang, LONG Guangcheng, DANG Hanfei, XIE Youjun. Steam-curing Temperature Effect and Its Influence on Heat Damage of Cement-based Material. Materials Reports, 2017, 31(23): 171-176.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.025  或          http://www.mater-rep.com/CN/Y2017/V31/I23/171
1 Kjellsen K O, Detwiler R J, Gj rv O E. Pore structure of plain cement pastes hydration at different temperatures[J]. Cem Concr Res, 1990, 20(6):927.
2 Kjellsen K O, Detwiler R J, Gjr v O E. Development of microstructures in plain cement pastes hydrated at different temperatures[J]. Cem Concr Res, 1991, 21(1):179.
3 Escalante-Garc a J I, Sharp J H. Effect of temperature on the hydration of the main clinker phases in portland cements: Part I, neat cements[J]. Cem Concr Res,1998, 28(9):1245.
4 Paul M, Glasser F. Impact of prolonged warm (85 ℃) moist cure on portland cement paste[J]. Cem Concr Res, 2000, 30(12):1869.
5 Gallucci E, Zhang X, Scrivener K L. Effect of temperature on the microstructure of calcium silicate hydrate (C-S-H)[J]. Cem Concr Res, 2013, 53(2):185.
6 Zhang Ziming, Zhou Hongjun, Zhao Jikun. Influences of temperature on strength of concrete[J]. J Hohai University( Natural Sciences), 2004(6):674(in Chinese).
张子明,周红军,赵吉坤. 温度对混凝土强度的影响[J].河海大学学报(自然科学版),2004(6):674.
7 Tang Kefeng, Liu Tao. Effect of high temperature curing on compressive strength of concrete[J]. J Build Mater, 2006(4):473(in Chinese).
谭克锋,刘涛. 早期高温养护对混凝土抗压强度的影响[J]. 建筑材料学报, 2006(4):473.
8 Bazant Z P, Najjar L J. Nonlinear water diffusion in nonsaturated concrete[J]. Materi Struct, 1972, 5(1):3.
9 Ayano T, Wittmann F H. Drying, moisture distribution, and shrinkage of cement-based materials[J]. Mater Struct, 2002, 35(247):134.
10 Zhang Zhibo, Zhang Jun. Experimental study on relationship between shrinkage strain and environmental humidity of concrete[J]. J Build Mater, 2006(6):720(in Chinese).
张智博,张君. 混凝土收缩与环境湿度的关系研究[J]. 建筑材料学报,2006(6):720.
11 Huang Yu, Qi Kun, Zhang Jun. Development of internal humidity in concrete at early ages[J]. J Tsinghua University (Sci Technol), 2007(3):309(in Chinese).
黄瑜,祁锟,张君. 早龄期混凝土内部湿度发展特征[J].清华大学学报(自然科学版),2007(3):309.
12 Gao Yuan, Zhang Jun, Hou Dongwei. Calculation of moisture induced stresses and evaluation of cracking risk in early-age concrete[J]. Eng Mech, 2012,29(2):121(in Chinese).
高原,张君,侯东伟. 早龄期混凝土湿度应力计算与开裂风险评估[J]. 工程力学, 2012,29(2):121.
13 He Zhimin, Long Guangcheng, Xie Youjun, et al. Water sorptivity of steam curing concrete[J]. J Build Mater, 2012(2):190(in Chinese).
贺智敏,龙广成,谢友均,等. 蒸养混凝土的毛细吸水特性研究[J]. 建筑材料学报,2012(2):190.
14 He Zhimin, Long Guangcheng, Xie Youjun, et al. Surface layer degradation effect of steam-cured concrete[J]. J Build Mater, 2014(6):994(in Chinese).
贺智敏,龙广成,谢友均,等. 蒸养混凝土的表层伤损效应[J]. 建筑材料学报, 2014(6):994.
15 Ma Kunlin, Long Guangcheng, Xie Youjun. A real case of steam-sured concrete track slab premature deterioration due to ASR and DEF[J]. Case Studies Constr Mater, 2017, 6:63.
16 Xiong Rongrong, Long Guangcheng, Xie Youjun, et al. Influence of mineral admixtures on compressive strength and pore structure of steam-cured high-strength cement paste[J]. J Chin Ceram Soc, 2017,45(2):175(in Chinese).
熊蓉蓉,龙广成,谢友均,等. 矿物掺合料对蒸养高强浆体抗压强度及孔结构的影响[J].硅酸盐学报,2017,45(2):175.
[1] 杨金祥, 石爽, 姜大川, 李旭, 李鹏廷, 谭毅, 姚玉杰, 池明, 张润德, 张建帅. 多晶硅定向凝固过程中温度对凝固速率的影响[J]. 材料导报, 2019, 33(z1): 28-32.
[2] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[3] 白强来, 付佺, 潘成刚, 王林德, 慕朝阳. 高延伸率柔性耐烧蚀涂料拉伸性能分析[J]. 材料导报, 2019, 33(z1): 485-487.
[4] 丁杨, 邓满宇, 周双喜, 王中平, 董晶亮, 魏永起. 基于COMSOL®模拟材料孔隙率与导热系数的演变关系[J]. 材料导报, 2019, 33(z1): 211-215.
[5] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[6] 侯艳, 程从前, 赵杰, 冯雪, 李然, 闵小华. 拉应力对2205双相不锈钢临界点蚀温度和点蚀行为的影响[J]. 材料导报, 2019, 33(6): 1022-1026.
[7] 陈志国, 方亮, 吴吉文, 张海筹, 马文静, 白月龙. 半固态挤压高硅铝合金二次加热的微观组织演变[J]. 材料导报, 2019, 33(6): 1006-1010.
[8] 卢林, 吴文恒, 龙倩蕾, 张亮, 张济山. 喷射成形工艺参数对沉积坯质量的影响[J]. 材料导报, 2019, 33(3): 390-394.
[9] 周宏明, 王博益, 李荐, 程名辉. CuO掺杂对钇钡铜氧陶瓷电性能的影响[J]. 材料导报, 2019, 33(2): 220-224.
[10] 潘清, 陈婷, 潘锐之, 刘宝, 李东旭. 复掺硅灰的硫酸钙晶须改性水泥基复合材料的力学性能与微观结构[J]. 材料导报, 2019, 33(2): 257-263.
[11] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[12] 产玉飞, 陈长军, 张敏. 金属增材制造过程的在线监测研究综述[J]. 材料导报, 2019, 33(17): 2839-2846.
[13] 王耀城,杨文根,李周义,刘伟,刘冰. 利用XCT技术检测水泥基材料微观结构的研究进展[J]. 材料导报, 2019, 33(17): 2902-2909.
[14] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[15] 卫芳彬, 张雷阳, 王颖, 李洋, 刘岗. 二氧化铈掺杂钛酸铋钠基陶瓷的高储能密度及温度稳定性[J]. 材料导报, 2019, 33(16): 2648-2653.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed