Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (23): 177-181    https://doi.org/10.11896/j.issn.1005-023X.2017.023.026
  第一届先进胶凝材料研究与应用学术会议 |
冻融循环和氯盐侵蚀耦合条件对聚合物快硬水泥混凝土抗冻性的影响*
南雪丽1, 2, 王超杰1, 2, 刘金欣1, 2, 韩博1, 2, 杨蓝蓝1, 2
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050;
2 兰州理工大学材料科学与工程学院,兰州 730050
Influence of the Freeze-Thaw Cycle and Chlorine Salt Erosion Coupling Conditions on Frost-resistance of Polymer-modified Rapid Hardening Concrete
NAN Xueli1, 2, WANG Chaojie1, 2, LIU Jinxin1, 2, HAN Bo1, 2, YANG Lanlan1, 2
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology,Lanzhou 730050;
2 School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 1822KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 北方地区冬季除冰盐的使用严重影响桥面铺装混凝土的耐久性。因此将硫铝酸盐快硬水泥(SAC)、聚合物改性快硬水泥(JS)和普通硅酸盐水泥(P.O)三种混凝土置于质量浓度为0%和3.5%的NaCl溶液中进行快速冻融循环试验,分析不同条件下混凝土的冻融损伤发展规律,并结合扫描电镜观察,对不同混凝土在水冻和盐冻环境下的内部损伤机理进行分析。试验表明:(1)相比于盐冻,水冻下混凝土并未发生明显质量变化,冻融破坏速度缓慢且程度低;(2)两种环境下混凝土抗冻性能均为P.O>JS>SAC;(3)盐冻环境下会产生更多的腐蚀产物Friedel盐,从而加剧混凝土的表面溃散。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
南雪丽
王超杰
刘金欣
韩博
杨蓝蓝
关键词:  聚合物  硫铝酸盐水泥  冻融循环  抗冻性    
Abstract: The use of deicing salt in the winter of northern China can seriously affect the durability of concrete for bridge deck overlays. In order to solve this problem, the law of freezing-thawing damage development under different situation has been studied. Rapid hardening sulphoaluminate cement(SAC), polymer-modified fast-hardening cement(JS) and ordinary Portland cement(P.O) were placed in NaCl solution with mass concentration of 0% and 3.5% to conduct fast freeze-thaw cycles experiment. Besides, with the help of SEM, the internal damage mechanism of different kinds of concrete under water and salt freezing environment were analyzed. Results showed that compared with the concrete in salt freezing situation, the sample in water freezing si-tuation did not show apparent mass loss, which meant that the freezing-thawing damage rate was slow and the damage was in a low degree. The antifreeze characteristic sequence of concrete both in two situations is P.O>JS>SAC. In salt freezing situation, more Fridel salt was yielded as corrosion products, which aggravated the collapsing of concrete.
Key words:  polymer    sulphoaluminate cement    freeze-thaw cycles    frost resistance
出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU528.41  
基金资助: *甘肃省科技计划资助(1508RJZA107)
作者简介:  南雪丽:女,1977年生,博士,副教授,主要从事道路材料的研究 E-mail:490985302@qq.com
引用本文:    
南雪丽, 王超杰, 刘金欣, 韩博, 杨蓝蓝. 冻融循环和氯盐侵蚀耦合条件对聚合物快硬水泥混凝土抗冻性的影响*[J]. 《材料导报》期刊社, 2017, 31(23): 177-181.
NAN Xueli, WANG Chaojie, LIU Jinxin, HAN Bo, YANG Lanlan. Influence of the Freeze-Thaw Cycle and Chlorine Salt Erosion Coupling Conditions on Frost-resistance of Polymer-modified Rapid Hardening Concrete. Materials Reports, 2017, 31(23): 177-181.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.026  或          https://www.mater-rep.com/CN/Y2017/V31/I23/177
1 Powers T C, Helmuth R A. Theory of volume changes in hardened portland cement paste during freezing[J]. Highway Res Board Proceedings, 1953, 32:285.
2 Yang Quanbing. Mechanisms of deicer-frost scaling of concrete(Ⅰ)——Capillary-uptake degree of saturation and ice-formation pressure[J]. J Building Mater, 2007, 10(5):522(in Chinese).
杨全兵. 混凝土盐冻破坏机理(Ⅰ)——毛细管饱水度和结冰压[J]. 建筑材料学报, 2007, 10(5):522.
3 Yang W. Study on test and evaluation methods of frost-resistance and chloride ion diffusion of concrete in a marine environment[J]. Mater Rev, 2008, 22(12):74(in Chinese).
杨文武, 钱觉时, 黄煜镔. 海洋环境下混凝土抗冻性和氯离子扩散性的实验与评价方法研究[J]. 材料导报, 2008, 22(12):74.
4 Setzer M J. The micro ice lens model of frost attack-basics and consequences for testing and application[C]∥The 5th International SymPosium on Cement and Conrete. Shanghai,2002:105.
5 Hong J X, Miao C W, Huang W. Damage caused by freeze-thaw cycles influencing on chloride diffusion of concrete[J]. Concrete, 2006(1):36(in Chinese).
洪锦祥, 缪昌文, 黄卫. 冻融损伤对混凝土氯离子扩散性能的影响 [J]. 混凝土, 2006(1):36.
6 Zhu F Z, Zhao T J, Zhang W D. Research progress on the concrete durability under combined action of freeze-thaw and other factors[J]. Mater Rev:Rev, 2011, 25(10):143(in Chinese).
朱方之, 赵铁军, 张卫东. 冻融和其它因素复合下混凝土的耐久性研究进展[J]. 材料导报:综述篇, 2011, 25(10):143.
7 Gifford P M, Gillott J E. Freeze-thaw durability of activated blast furnace slag cement concrete[J]. ACI Mater J, 1996, 93(3):242.
8 Marchand J, Pigeon M, Bager D, et al. Influence of chloride solution concentration on deicer salt scaling deterioration of concrete[J]. ACI Mater J, 1999, 96(4):429.
9 Yang Q R, Guo B L, Yang Q B. Research and application of air-entrained concrete to prestressed box girder of Qingdao bay bridge[J]. Highway, 2009(9):145(in Chinese).
杨钱荣, 郭保林, 杨全兵. 引气混凝土在青岛海湾大桥工程预应力桥梁中的应用研究[J]. 公路, 2009(9):145.
10 Wang J L, Shen L T, Niu K M. Influencing factors of deicer-salt resistance of pavement cement concrete[J]. J Highway Transportation Res Development, 2013, 30(10):1(in Chinese).
王稷良, 申力涛, 牛开民. 路面水泥混凝土抗盐冻性能的影响因素 [J]. 公路交通科技, 2013, 30(10):1.
11 Yang W W, Qian J S, Huang Y B. Frost resistance and chloride ion diffusion of silica-fume concrete in a marine environment[J]. J Chongqing University, 2009, 32(2):158(in Chinese).
杨文武, 钱觉时, 黄煜镔. 海洋环境下硅灰混凝土的抗冻性与氯离子扩散性[J]. 重庆大学学报, 2009, 32(2):158.
12 Zhang Y Q. Durability and service life design of RC members exposed to chloride salt-frost damage[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011(in Chinese).
张云清. 氯化物盐冻作用下混凝土构件的耐久性评估与服役寿命设计方法[D]. 南京:南京航空航天大学, 2011.
13 Yoshihiko Ohama. Handbook of polymer-modified concrete and mortars[M]. USA: Noyes publications, 1995:77.
14 Li Z L, Liang N X. Influence of SBR polymer on cement hydration and hardening[J]. J Building Mater, 1999, 2(1):6(in Chinese).
李祝龙, 梁乃兴. 丁苯类聚合物乳液对水泥水化硬化的影响[J].建筑材料学报, 1999, 2(1):6.
15 Xiong J, Shen A. Functional mechanism of the polymer cement concrete[J]. J Zhengzhou University(Engineering Science), 2006, 27(3):15(in Chinese).
熊剑平, 申爱琴. 聚合物水泥混凝土改性机理研究[J]. 郑州大学学报(工学版), 2006, 27(3):15.
16 Nan X L, Shao K M, Yang L L, et al. Influence of polymer additive amount on frost-resistance of polymer-modified fast-hardening cement mortars[J]. J Lanzhou University of Technology, 2016, 42(6):134(in Chinese).
南雪丽, 邵楷模, 杨兰兰, 等. 聚合物掺量对聚合物快硬水泥砂浆抗冻性的影响[J]. 兰州理工大学学报, 2016, 42(6):134.
17 Zhang Y F, Zhang D C, Zhang M, et al. Hydration performance of sulphoaluminate cement mixed with blending material[J]. J Jinan University (Science and Technology), 2006, 20(4):292(in Chinese).
张云飞, 张德成, 张鸣, 等. 掺合料对硫铝酸盐水泥性能的影响 [J]. 济南大学学报(自然科学版), 2006, 20(4):292.
18 Browne F P, Cady P D. Deicing scaling mechanism in concrete[J]. Special Publication, 1975, 47:101.
[1] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[2] 蒋曜年, 刘欢, 钟镇涛, 何泽乾, 毛卫国, 戴翠英, 张有为, 刘平桂. SiCN@Fe复合吸波涂层高温原位拉伸测试分析[J]. 材料导报, 2025, 39(3): 23050156-5.
[3] 李东翰, 宁舒蕊, 于璐, 廖明义, 张梦霞, 尤诗博, 方庆红. 稀土催化还原体系用于遥爪型低分子量含氟聚合物端基官能化的基础研究[J]. 材料导报, 2025, 39(3): 23100154-9.
[4] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[5] 元强, 钟福文, 姚灏, 左胜浩, 谢宗霖, 姜孟杰. 搅拌工艺对高掺量丁苯乳液改性硫铝酸盐水泥性能的影响[J]. 材料导报, 2024, 38(9): 22110286-7.
[6] 唐宁, 王延军, 赵明宇, 孙艺涵, 王晴. 偏铝酸钠对单组分地聚水泥的性能调控及水化机理[J]. 材料导报, 2024, 38(8): 22060304-6.
[7] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[8] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[9] 钮政, 罗希, 徐能能, 陈刚, 乔锦丽. 聚乙烯醇基凝胶电解质的制备及在储能器件中的应用[J]. 材料导报, 2024, 38(8): 23040146-11.
[10] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[11] 吕絮, 刘俊伟, 高嵩, 孟鋆, 国振. 钻井废弃泥浆固化土力学特性试验分析[J]. 材料导报, 2024, 38(7): 22080083-6.
[12] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[13] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[14] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[15] 张白, 彭晖, 杨致远. 海水干湿循环作用下地聚物基珊瑚骨料混凝土力学性能的研究[J]. 材料导报, 2024, 38(23): 23090081-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed