Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 171-177    
  无机非金属及其复合材料 |
(Bi0.5Na0.5)0.94Ba0.06Ti1-x(Yb0.5Nb0.5)xO3无铅陶瓷的结构,储能、应变、介电及阻抗性能研究
孙亚兵1, 包兆先1, 霍子伟1, 杨玲1, 许积文1,2, 周昌荣1,2, 王华1,2
1 桂林电子科技大学材料科学与工程学院,桂林 541004
2 桂林电子科技大学广西信息材料重点实验室,桂林 541004
Study on Structure, Energy Storage, Strain, Dielectric, Impedance Properties of (Bi0.5Na0.5)0.94Ba0.06Ti1-x(Yb0.5Nb0.5)xO3 Ceramics
SUN Yabing1, BAO Zhaoxian1, HUO Ziwei1, YANG Ling1, XU Jiwen1,2, ZHOU Changrong1,2, WANG Hua1,2
1 School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004
2 Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004
下载:  全 文 ( PDF ) ( 10917KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用固相法制备了(Bi0.5Na0.5)0.94Ba0.06Ti1-x(Yb0.5Nb0.5)xO3(BNBT-xYN,x=0.01、0.02、0.03、0.04、0.05、0.07)无铅陶瓷,系统研究了(Yb0.5Nb0.5)4+掺杂量对陶瓷相结构,表面微观结构,铁电、储能、应变及阻抗性能的影响。研究结果表明:(Yb0.5Nb0.5)4+均固溶进入BNBT陶瓷基体中,形成单一的钙钛矿结构。BNBT-xYN陶瓷具有致密的结构,类球形的晶粒随着(Yb0.5Nb0.5)4+掺杂量增加而明显细化。陶瓷由铁电体向弛豫铁电体转变,当x=0.02时可观察到类反铁电体的双电滞回线。掺杂使得陶瓷的储能密度和储能效率均得到提高,当x=0.03时陶瓷的储能密度和储能效率在70 kV/cm下分别达到0.62 J/cm3、50.16%;当x=0.02时BNBT-xYN陶瓷伴随着大的应变,应变量最大可达0.346%。(Yb0.5Nb0.5)4+的掺杂降低了陶瓷的铁电性,使其向弛豫铁电体转变,转变温度降低到室温以下,同时陶瓷有很好的绝缘性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙亚兵
包兆先
霍子伟
杨玲
许积文
周昌荣
王华
关键词:  BNBT陶瓷  (Yb0.5Nb0.5)4+  储能  应变  反铁电    
Abstract: Lead-free (Bi0.5Na0.5)0.94Ba0.06Ti1-x(Yb0.5Nb0.5)xO3 ceramics (x=0.01, 0.02, 0.03, 0.04, 0.05, 0.07) were prepared by solid phase method. The influences of (Yb0.5Nb0.5)4+ doping amount on the phase structure, surface microstructure, ferroelectric, energy storage, strain and impedance properties were studied systematically. The results show that all (Yb0.5Nb0.5)4+ complex ions dissolve into BNBT ceramic matrix and form perovskite structure. BNBT-xYN ceramics have compact structure, and the spheroid-like grains are obviously refined with the increase of (Yb0.5Nb0.5)4+ doping content. The phase transition from ferroelectrics to relaxation ferroelectrics is observed at x=0.02. Complex ions doping improves the energy storage density and energy storage efficiency of BNBT-xYN ceramics. When doping amount is 0.03, the energy storage density and energy storage efficiency reach 0.62 J/cm3 and 50.16% respectively at 70 kV/cm. At doping content of 0.02, BNBT-xYN ceramics illustrate large strain of up to 0.346%. (Yb0.5Nb0.5)4+ doping reduces the ferroelectric properties of BNBT-xYN ceramics and makes it transform into relaxed ferroelectric. The phase transition temperature drops below room temperature. The BNBT-xYN ceramics have good insulation.
Key words:  BNBT ceramics    (Yb0.5Nb0.5)4+    energy storage    strain    anti-ferroelectric
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TQ174.1  
基金资助: 国家自然科学基金(11664006;61741105); 广西自然科学基金(2016GXNSFAA380069)
作者简介:  孙亚兵,桂林电子科技大学研究生。2017年毕业于河南师范大学。许积文,桂林电子科技大学副教授,硕士生导师。2014年毕业于陕西师范大学,2015—2017年在广东风华高新科技股份有限公司从事博士后研究。在国内外学术期刊发表论文50余篇,申请国家发明专利12项,其中授权9项。其团队主要研究方向包括:压铁电陶瓷、氧化物陶瓷靶材、纳米能量收集。在研及完成科研项目15余项,获得省级自然科学奖和科技进步奖各1项。csuxjw@126.com
引用本文:    
孙亚兵, 包兆先, 霍子伟, 杨玲, 许积文, 周昌荣, 王华. (Bi0.5Na0.5)0.94Ba0.06Ti1-x(Yb0.5Nb0.5)xO3无铅陶瓷的结构,储能、应变、介电及阻抗性能研究[J]. 材料导报, 2019, 33(z1): 171-177.
SUN Yabing, BAO Zhaoxian, HUO Ziwei, YANG Ling, XU Jiwen, ZHOU Changrong, WANG Hua. Study on Structure, Energy Storage, Strain, Dielectric, Impedance Properties of (Bi0.5Na0.5)0.94Ba0.06Ti1-x(Yb0.5Nb0.5)xO3 Ceramics. Materials Reports, 2019, 33(z1): 171-177.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/171
1 Jin J, Wan D, Ying Y, et al. Sensors & Actuators A Physical,2011,165(2),410.
2 Helke G, Lubitz K. Piezoelectricity Evolution & Future of A Technology,2007,114,89.
3 Zhu Z. University of Leeds,2012,40(19),6060.
4 Takenaka T, Nagata H, Hiruma Y. Japanese Journal of Applied Physics,2008,47(47),3787.
5 Xiao D Q, Lin D M, Zhu J G, et al. Journal of Electroceramics,2006,16(4),271.
6 Takenaka T. Ferroelectrics,1999,230(1),12.
7 Choy S H. Study of BNT-BKT-BT lead-free piezoelectric ceramics and their application in piezoelectric devices. Ph.D.Thesis, Hong Kong Polytechnic University, China,2007.
8 Mu W, Du H, Shi X, et al. Journal of the Chinese Ceramic Society,2011,39(12),1941.
9 Ullah A, Chang W, Won C, et al. Journal of the American Ceramic Society,2011,94(11),3915.
10 Chen C S, Chen P Y, Tu C S, et al. Ceramics International,2014,40(7),9591.
11 Yang L, Xuezhong X U, Houlin F, et al. Piezoelectrics & Acoustooptics,2017,39(1),23.
12 Sittiketkorn P, Bongkarn T. Ferroelectrics Letters Section,2013,40(4-6),8.
13 单召辉, 刘心宇, 杨桂华, 等. 人工晶体学报,2008,37(5),1152.
14 Pham K N, Hussain A, Ahn C W, et al. Materials Letters,2010,64(20),2219.
15 Han F, Deng J, Liu X, et al. Ceramics International,2017,43(7),5564.
16 Kitanaka Y, Ogino M, Hirano K, et al. Japanese Journal of Applied Physics,2013,52(9S1),09KD01.
17 Mahajan A, Zhang H F, Wu J, et al. Journal of Physical Chemistry C,2017,121(10),5709.
18 Ma X X, Li W Z, Zeng W D, et al. Advances in Applied Ceramics,2014,113(6),362.
19 Cheng R, Duan Y, Chu R, et al. Journal of Materials Science: Materials in Electronics,2015,26(7),5409.
20 Cheng R, Xu Z, Chu R, et al. Journal of Alloys and Compounds,2015,632,580.
21 Yu Z, Liu Y, Shen M, et al. Ceramics International,2017,43(10),7653.
22 Wang Y, Lv Z, Xie H, et al. Ceramics International,2014,40(3),4323.
23 Mu Wen fang, Du Huiling, Shi Xiang, et al. Journal of the Chinese Ceramic Society,2011,39(12),1941.
24 Jing C, Wang Y, Zhao L. Ferroelectrics,2017,520(1),224.
25 Xu Q, Liu H, Zhang L, et al. In: Conference Record of the 2015 IEEE International Symposium on Applications of Ferroelectric. India,2015,pp.87.
26 Li L, Hao J, Xu Z, et al. Materials Letters,2016,184,152.
27 Li P, Liu B, Shen B, et al. Ceramics International,2017,43(1),1008.
28 Guo Y C, Fan H Q. Journal of Materials Science,2015,50(1),403.
29 Badapanda T, Sahoo S, Nayak P. IOP Conference Series: Materials Scie-nce and Engineering,2017,178,012032.
30 Cernea M, Galassi C, Vasile B S, et al. Journal of the European Ceramic Society,2012,32(10),2389.
31 Anem S, Rao K S, Rao K H, et al. Ceramics International,2016,42,15319.
32 Neurgaonkar R R, Oliver J R, Cory W K, et al. Materials Research Bulletin,1983,18(6),735.
33 Neurgaonkar R R, Nelson J G, Oliver J R, et al. Materials Research Bulletin,1990,25(8),959.
34 袁昌来, 刘心宇, 黄静月,等. 物理学报,2011,60(2),410.
35 Chandrasekhar M, Khatua D K, Pattanayak R, et al. Journal of Physics & Chemistry of Solids,2017,111,60.
[1] 刘新灵, 陶春虎, 王天宇. 夹杂物形状对夹杂/基体界面应力应变分布的影响[J]. 材料导报, 2019, 33(z1): 436-439.
[2] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[3] 汪可华, 陈坚, 王福德, 梁晓康, 孙正明. 材料应力-应变的球形纳米压入法研究进展[J]. 材料导报, 2019, 33(9): 1490-1499.
[4] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[5] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[6] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[7] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[8] 王潇舷, 金祖权, 姜玉丹, 陈凡秀. 基于DIC与应变测试的混凝土中钢筋锈胀应力分析[J]. 材料导报, 2019, 33(16): 2690-2696.
[9] 卫芳彬, 张雷阳, 王颖, 李洋, 刘岗. 二氧化铈掺杂钛酸铋钠基陶瓷的高储能密度及温度稳定性[J]. 材料导报, 2019, 33(16): 2648-2653.
[10] 王义超, 余江滔, 魏琳卓, 徐世烺. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16): 2665-2670.
[11] 岳承军, 余红发, 麻海燕, 章艳, 梅其泉, 达波. 全珊瑚海水混凝土动态冲击性能试验研究[J]. 材料导报, 2019, 33(16): 2697-2703.
[12] 李晓琴, 杨潇, 丁祖德, 申林方, 杜茜. 基于UDEM-ACE方法的ECC配合比优化设计[J]. 材料导报, 2019, 33(14): 2354-2361.
[13] 魏明海, 孙丽, 张春巍, 齐佩佩, 朱洁. 纳米氧化锆和氧化硅混合体系剪切增稠液的流变性能[J]. 材料导报, 2019, 33(12): 1969-1974.
[14] 程晓农, 桂香, 罗锐, 杨雨童, 陈乐利, 王威, 王稳. 核电装备用奥氏体不锈钢的高温本构模型及动态再结晶[J]. 材料导报, 2019, 33(11): 1775-1781.
[15] 张潇华, 于思荣, 谭哲, 郭丽娟, 刘旭. 304不锈钢在Al-6Si-10Cu储能合金液中的腐蚀行为[J]. 材料导报, 2019, 33(10): 1681-1684.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed