Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 521-525    
  高分子与聚合物基复合材料 |
锰氧化物催化分解室内甲醛的研究进展
黄慧娟1, 尚莉莉2, 马建锋2, 田根林2, 杨淑敏2, 刘杏娥1
国际竹藤中心,竹藤科学与技术重点实验室,北京 100102
Advances on Catalytic Oxidation of Formaldehyde by Manganese Oxide
HUANG Huijuan1, SHANG Lili2, MA Jianfeng2, TIAN Genlin2, YANG Shumin2, LIU Xing’e1
Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102
下载:  全 文 ( PDF ) ( 1768KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 甲醛是一种常见的室内污染物,一定浓度的甲醛会危害人类的身体健康。因此,甲醛的消除尤为重要。锰氧化物是一种深度氧化剂,催化活性高,在室温下能够较好地催化氧化甲醛,且不会产生二次有害气体,是近几年来催化降解甲醛的研究热点之一。本文对单一锰氧化物、过渡金属掺杂锰氧化物以及负载锰氧化物催化剂进行了介绍,并简述了锰氧化物的晶体、形貌、表面处理对甲醛催化效果的影响,概述了甲醛催化分解机理,并对锰氧化物催化降解甲醛的发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄慧娟
尚莉莉
马建锋
田根林
杨淑敏
刘杏娥
关键词:  锰氧化物  催化  甲醛  影响因子  机理    
Abstract: Formaldehyde is a common indoor pollutant, and long-term exposure to certain concentrations of formaldehyde has the potential to endanger human health. Therefore, it is of utmost importance to eliminate formaldehyde. Manganese oxides have seriously been considered as a kind of deep oxidant with high catalytic activity. It should be noted that manganese oxides can catalyze the oxidation of formaldehyde at room temperature without producing secondary harmful gases. Recently, manganese oxides have become a research hotspot in terms of the catalytic degradation of formaldehyde. In this paper, single manganese oxide, transition metal doped with manganese oxides, and manganese oxides supported catalyst were introduced. The influence of crystal structure, morphology, and surface treatment of manganese oxides on the catalytic performance for formaldehyde oxidation was described, and the catalytic decomposition mechanism of formaldehyde was summarized. The development trend of catalytic degradation of formaldehyde using manganese oxide was also explored.
Key words:  manganese oxides    catalytic    formaldehyde    influence factors    mechanisms
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  Q5  
  TG1  
基金资助: “十三五”国家重点研发计划(2017YFD0600804)
通讯作者:  1519881474@qq.com   
作者简介:  黄慧娟,2016年毕业于安徽农业大学,获得农学学士学位。现为国际竹藤中心硕士研究生,在刘杏娥研究员的指导下进行研究。目前主要研究的领域为竹活性炭负载锰氧化物去除室内甲醛。
刘杏娥,博士,研究员,博士生导师。主要从事竹藤材结构与性能、竹藤等生物质基炭材料方面的研究工作。主持和参加了国家级、省部级科研课题多项,在Wood and Fiber ScienceHolzforschungCarbohydrates PolymerElectrochimica Acta等多种刊物发表论文40余篇,参与编写专著3部,获“梁希”林业科学技术奖一等奖、二等奖及茅以升木材科学技术奖各1项,入选“国家林业和草原局百千万人才工程”第五批人选和国家林业局“全国生态建设突出贡献先进个人”。
引用本文:    
黄慧娟, 尚莉莉, 马建锋, 田根林, 杨淑敏, 刘杏娥. 锰氧化物催化分解室内甲醛的研究进展[J]. 材料导报, 2019, 33(Z2): 521-525.
HUANG Huijuan, SHANG Lili, MA Jianfeng, TIAN Genlin, YANG Shumin, LIU Xing’e. Advances on Catalytic Oxidation of Formaldehyde by Manganese Oxide. Materials Reports, 2019, 33(Z2): 521-525.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/521
1 Xia C F. Applied Mechanics and Materials,2012,178,280.
2 Salthammer T Mentese, Marutzky R S. Chemical Reviews,2010,110,2536.
3 杨振洲,蔡同建.中国公共卫生,2003(6),137.
4 Tong H,Zhao L,Li D,et al. Journal of Alloys and Compounds,2011,509(22),6408.
5 Liang W,Li J,Jin Y. Build Environ,2012,51,345.
6 蔡健,胡将军,张雁.环境科学与技术,2004,27(3),16.
7 Le Y,Guo D,Cheng B,et al. Applied Surface Science,2013,274,110.
8 Ma C,Li X,Zhu T. Carbon,2011,49(8),2873.
9 Chen Y, He J, Tian H, et al. Journal of Colloid & Interface Science,2014,428(428),1.
10 Qi L, Cheng B, Yu J, et al. Journal of Hazardous Materials,2015,301,522.
11 陈冰冰.甲醛的“存储—氧化”脱除与室温催化氧化.博士学位论文,大连理工大学,2013.
12 王丽晓,王松,李昆.河南科技,2013(17),181.
13 Nie L, Yu J, Jaroniec M, et al. Catalysis Science & Technology,2016,6(11),3649.
14 Xu Q, Lei W, Li X,et al. Environmental Science & Technology,2014,48(16),9702.
15 Zhang C, Liu F, Zhai Y, et al. Angewandte Chemie International Edition,2012,51(38),9628.
16 Huang H, Leung D Y C. ACS Catalysis,2011,1(4),348.
17 Tang X, Chen J, Huang X, et al. Applied Catalysis B: Environmental,2008,81(1-2),115.
18 Averlant R, Royer S, Giraudon J M, et al. Chemcatchem,2014,6(1),152.
19 Zeng L, Song W, Li M, et al. Applied Catalysis B: Environmental,2014,147,490.
20 Zhang J, Li Y, Wang L, et al. Catalysis Science & Technology,2015,5(4),2305.
21 Wiechen M, Zaharieva I, Dau H, et al. Chemical Science,2012,3(7),2330.
22 Atribak I, Bueno-López A, García-García A, et al. Applied Catalysis B: Environmental,2010,93(3-4),267.
23 Athouël L, Moser F, Dugas R, et al. The Journal of Physical Chemistry C,2008,112(18),7270.
24 Sekine Y. Atmospheric Environment,2002,36(35),5543.
25 Tian H, He J, Zhang X, et al. Microporous and Mesoporous Materials,2011,138(1-3),118.
26 Liu Huiqi, Chen Dong, Liu Haibo, et al. Aerosol and Air Quality Research,2017,17(4),1011.
27 苏佳飞,杨国红,徐合,等.上海师范大学学报(自然科学版),2018(1),123.
28 Tang X, Li Y, Huang X, et al. Applied Catalysis B Environmental,2006,62(3),265.
29 Shi C, Wang Y, Zhu A, et al. Catalysis Communications,2012,28(28),18.
30 Wang Y, Zhu A, Chen B, et al. Catalysis Communications,2013,36,52.
31 Subramanian V, Zhu H, Wei B. Chemical Physics Letters,2008,453(4-6),242.
32 Maliyekkal S M, Lisha K P, Pradeep T. Journal of Hazardous Materials,2010,181(1-3),986.
33 Wahid S, Tatarchuk B J. Industrial & Engineering Chemistry Research,2013,52(44),15494.
34 Wang J, Yunus R, Li J, et al. Applied Surface Science,2015,357,787.
35 Zhou L, He J, Zhang J, et al. Journal of Physical Chemistry C,2011,115(34),16873.
36 Lu L, Tian H, He J, et al. Journal of Physical Chemistry C,2016,120(41),23660.
37 Beley M, Brenet J. Electrochimica Acta,1973,18(12).1003.
38 Torres J Q, Giraudon J M, Lamonier J F. Catalysis Today,2011,176(1),277.
39 Wang J, Zhang G, Zhang P. Journal of Materials Chemistry A,2017,5(12),5719.
40 Tian H, He J, Liu L, et al. Microporous and Mesoporous Materials,2012,151,397.
41 Wang J, Zhang P, Li J, et al. Environmental Science & Technology,2015,357,787.
42 Devaraj S, Munichandraiah N. Journal of Physical Chemistry C,2008,112(11),4406.
43 Chen T, Dou H, Li X, et al. Microporous and Mesoporous Materials,2009,122(1),270.
44 庞光龙.MnOx基催化剂上甲醛室温催化氧化反应的研究.硕士学位论文,北京理工大学,2015.
45 Liu L, Tian H, He J, et al. Journal of Environmental Sciences,2012,24(6),1117.
46 Liu L, Tian H, He J, et al. Journal of Nanoscience and Nanotechnology,2015,15(4),2887.
47 赵艳磊,田华,贺军辉,等.应用化工,2017,46(5),814.
48 Rong S, Zhang P, Yang Y, et al. ACS Catalysis,2017,7(2),1057.
49 田华,贺军辉.化学通报,2013,76(2),100.
50 Wang J, Li J, Jiang C, et al. Applied Catalysis B Environmental,2017,204,147.
51 Yan J, Wu G, Guan N, et al. Physical Chemistry Chemical Physics,2013,15(26),10978.
52 Janotti A, Varley J B, Rinke P, et al. Physical Review B,2010,81(8),101.
53 Zhao W, Cui H, Liu F, et al. Clays and Clay Minerals,2009,57(5),513.
54 Shi C, Chen B B, Li X S, et al. Chemical Engineering Journal,2012,200-202,729.
[1] 张瑞阳, 李成金, 张艾丽, 周莹. 整体式光催化材料的制备及应用研究进展[J]. 材料导报, 2020, 34(3): 3001-3016.
[2] 朱文娟,高凤雨,唐晓龙,易红宏,于庆君,赵顺征. 尖晶石型催化剂的制备及在气态污染物净化中的应用综述[J]. 材料导报, 2020, 34(3): 3044-3055.
[3] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[4] 肖洒, 谈恒, 吴珊妮, 曾敏, 熊春荣. CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇[J]. 材料导报, 2020, 34(2): 2005-2009.
[5] 邵阳阳, 靳惠明, 俞亮, 高吉成, 陈悦蓉. Mo掺杂Co-B非晶态合金的制备及催化硼氢化钠水解制氢性能[J]. 材料导报, 2020, 34(2): 2063-2066.
[6] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[7] 刘大波, 苏向东, 赵宏龙. 光催化分解水制氢催化剂的研究进展[J]. 材料导报, 2019, 33(Z2): 13-19.
[8] 李贺, 陈开斌, 罗英涛, 孙丽贞, 杜娟. 纳米碳基复合吸波材料吸波机理及性能研究进展[J]. 材料导报, 2019, 33(Z2): 73-77.
[9] 刘畅, 张志宾, 王有群, 钟玮鸿, 刘云海. 基于g-C3N4异质结复合材料光催化降解污染物的研究进展[J]. 材料导报, 2019, 33(Z2): 104-112.
[10] 郑孝源, 赵子龙, 任志英. 碳掺杂TiO2纳米管的制备和表征及在污水处理方面的应用[J]. 材料导报, 2019, 33(Z2): 113-115.
[11] 刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
[12] 梁辰, 吴艳青, 王大伟, 王晗, 刘乐乐, 赵丕琪. 纳米TiO2光催化水泥基材料的研究进展[J]. 材料导报, 2019, 33(Z2): 267-272.
[13] 徐颖, 邓利蓉, 杨进超, 左联, 杜广报, 芦玉峰, 李莎莎. 磷酸镁水泥的制备及其快速修补应用研究进展[J]. 材料导报, 2019, 33(Z2): 278-282.
[14] 杭思羽, 徐闻婷, 韩志伟, 王伯良. 铝-氟聚物含能亚稳态复合材料研究进展[J]. 材料导报, 2019, 33(Z2): 410-414.
[15] 邓友生, 蔡梦真, 王一雄, 苏家琳, 孙雅妮. 可回收锚件机理与工程应用研究[J]. 材料导报, 2019, 33(Z2): 473-479.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed