Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 468-472    
  金属与金属基复合材料 |
基于轻量化材料防撞梁的低速碰撞性能研究
刘伟东, 薄旭盛, 何成
中国汽车技术研究中心有限公司,天津 300300
Research on Low-speed Collision Performance of Anti-collision Beam Basedon Lightweight Material
LIU Weidong, BO Xusheng, HE Cheng
China Automotive Technology and Research Center, Tianjin 300300, China
下载:  全 文 ( PDF ) ( 2104KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究轻量化材料与结构对防撞梁性能的影响,本工作选取铝合金和碳纤维两种材料为研究对象,针对这两种材料分析了开口和闭口防撞梁低速碰撞性能的差别。基于碳纤维材料的结构,分析了碳纤维材料的力学性能,同时运用数值模拟建立了低速碰撞模型,研究了铝合金和碳纤维防撞梁在碰撞过程中的最大侵入量、侵入加速度以及侵入力随时间的变化,最后运用试验进行验证。研究结果表明,开口铝合金防撞梁和碳纤维防撞梁对碰撞加速度的波动范围影响要小于闭口铝合金防撞梁;同时与闭口铝合金防撞梁相比,开口铝合金防撞梁和碳纤维防撞梁的最大侵入量减小8.2%、18.6%;碰撞过程中闭口铝合金防撞梁受力最大,然后依次是碳纤维防撞梁、开口铝合金防撞梁。试验结果与数值模拟相符,进一步说明探究结果的合理性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘伟东
薄旭盛
何成
关键词:  轻量化  防撞梁  铝合金  碳纤维  数值模拟    
Abstract: In order to research the influence by lightweight materials and structures on the performance of anti-collision beams, this paper selected aluminum alloy and carbon fiber as the research objects, this research focused on analysis the different performance on low-velocity impact with open and closed anti-collision beams with these two kinds of material. For the carbon fiber structure, this research analyzed the mechanical pro-perties of it, and established a low-velocity impact model which studied the maximum intrusion, intrusion acceleration and the intrusion force changing along with the changing of time on aluminum alloy anti-collision beams and carbon fiber anti-collision beams during the low-velocity impact with numerical simulation method simultaneously and verified this research with test finally. Study results show that the influence by open aluminum alloy anti-collision beams and carbon fiber anti-collision beams on the fluctuation range of the impact acceleration are smaller than that of the closed aluminum alloy anti-collision beam, and compared with the closed aluminum alloy anti-collision beam, the reduction of maximum intrusion of opening aluminum alloy anti-collision beam and carbon fiber anti-collision beam are 8.2% and 18.6%. During the impact the maximum anti-collision beams force are closed, carbon fiber, opening anti-collision beam in sequence. The test results agreed with the numerical simulation results, and this was further evidence that the research results were reasonable.
Key words:  lightweight    anti-collision beam    aluminum alloy    carbon fiber    numerical simulation
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TB333  
通讯作者:  1006473431@qq.com   
作者简介:  刘伟东,吉林大学毕业。2010年7月至2017年7月,在吉林大学获得材料工学学士学位和材料科学加工专业工学硕士学位。在校期间,以第一作者在吉林大学工学报EI期刊上发表论文1篇,发明专利1项。2017年7月入职中国汽车技术研究中心有限公司,在职期间研究工作主要围绕主动安全方向,负责《基于AEB行人测试装置开发的关键技术研究》项目,开展关于汽车主动安全的研究。工作期间发表论文2篇,申请专利4项,获得“青年科技骨干”称号。
引用本文:    
刘伟东, 薄旭盛, 何成. 基于轻量化材料防撞梁的低速碰撞性能研究[J]. 材料导报, 2019, 33(Z2): 468-472.
LIU Weidong, BO Xusheng, HE Cheng. Research on Low-speed Collision Performance of Anti-collision Beam Basedon Lightweight Material. Materials Reports, 2019, 33(Z2): 468-472.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/468
1 徐虹,沈永波,谷诤巍,等.吉林大学报(工学版),2014,41(S1),111.
2 徐中明,徐小飞,万鑫铭.机械工程学报,2013,49(8),136.
3 赖兴华,王磊,李洁.清华大学学报(自然科学版),2017,57(5),504.
4 安治国,赵云云.计算机仿真,2016,33(7),205.
5 Meyer A, Wietbrock B, Hirt G. International Journal of Machine Tools and Manufacture,2008,48(5),522.
6 Kopp R, Wiedner C, Meyer A. International Sheet Metal Review,2005,4,20.
7 陈全世,宋云.汽车工程,1998,20(2),124.
8 Farkas L, Moens D, Donders S, et al. Mechanical Systems and Signal Processing,2012,32,59.
9 Scott W R, Bain C, Manoogian S J, et al. SAE International Journal of Passenger Cars: Mechanical Systems,2010,3(1),21.
10 杨晓明,王宝雨,校文超,等.工程科学学报,2018,40(4),485.
11 郭鹏程,曹淑芬,易杰等.汽车工程,2017,39(8),915.
12 胡红舟,钟志华.汽车工程,2018,40(8),918.
13 Salski B, Gwarek W, Korpas P.2014 IEEE MTT-S International,2014.
14 Ruggles-Wrenn M B, Corum J M, Battiste R L. Composites Part A Applied Science & Manufacturing,2003,34(8),731.
15 Mainka H, Täger O, Körner E, et al. Journal of Materials Research & Technology,2015,4(3),283.
[1] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[2] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[3] 张绪, 冯瑞, 张晔, 郭卫, 刘富. 民机复合材料帽型长桁压缩承载力分析与试验[J]. 材料导报, 2019, 33(Z2): 215-221.
[4] 韩艳, 王龙龙, 刘志浩. CFRP板加固含I型裂纹混凝土的断裂扩展规律[J]. 材料导报, 2019, 33(Z2): 304-308.
[5] 吴懿萍, 何臻毅, 周志纲, 熊汉青, 贾寓真, 李承波, 李国锋. 非等温回归再时效对7050铝合金组织与力学性能的影响[J]. 材料导报, 2019, 33(Z2): 394-397.
[6] 陈宇豪, 薛松柏, 王博, 韩翼龙. 汽车轻量化焊接技术发展现状与未来[J]. 材料导报, 2019, 33(Z2): 431-440.
[7] 余雷, 王辉, 单兵, 姚炜峰, 唐姝文, 张俊, 陈业高. 低雾化气压对喷射成形雾化过程的影响[J]. 材料导报, 2019, 33(Z2): 463-467.
[8] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[9] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[10] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[11] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[12] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[13] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[14] 王一唱, 曹玲飞, 吴晓东, 邹衍, 黄光杰. 石油钻杆用7xxx系铝合金微观组织和性能的研究进展[J]. 材料导报, 2019, 33(7): 1190-1197.
[15] 陈志国, 方亮, 吴吉文, 张海筹, 马文静, 白月龙. 半固态挤压高硅铝合金二次加热的微观组织演变[J]. 材料导报, 2019, 33(6): 1006-1010.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed