Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 300-303    
  无机非金属及其复合材料 |
发泡混凝土碱浸试块碳酸化增强固碳特性研究
任国宏1, 廖洪强1, 程芳琴1, 闫志华2
1 山西大学资源与环境工程研究所,太原 030006;
2 长治市杨暴热电粉煤灰综合利用有限公司,长治 046000
Study on Carbon Sequestration Characteristics Enhancing by Carbonation Reactionof CO2 for Foamed Concrete Block with Alkali Leaching
REN Guohong1, LIAO Hongqiang1, CHENG Fangqin1, YAN Zhihua2
1 Institute of Resources and Environment Engineering, Shanxi University, Taiyuan 030006;
2 Changzhi Yangbao, Thermoelectric Fly Ash Comprehensive Utilization Limited, Changzhi 046000
下载:  全 文 ( PDF ) ( 2367KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 发泡混凝土与CO2碳酸化反应不仅可以改善混凝土性能而且可实现CO2的矿化固定达到减排的效果。本实验分别考察了CO2反应时间对未浸、水浸和电石渣饱和液浸泡后发泡混凝土试块抗压强度的影响,并采用XRD、TGA 、SEM分析测试手段,分别对试块的矿物组成、热失重特性和微观形貌特性进行了表征。结果表明:发泡混凝土试块的抗压强度随碳酸化反应时间延长出现先增加后降低的变化趋势;碱浸碳酸化反应4 h试块强度最高为6.5 MPa,较未碳酸化反应试块强度上升80.6%。SEM分析结果显示,发泡混凝土试块孔壁结构随碳酸化反应时间延长发生较明显变化,整体上呈现“先片状致密后粒化疏松”的转化历程,这可能是导致试块抗压强度随碳酸化时间延长出现先增加后降低现象的内在原因。TGA曲线结果表明,试块达最高抗压强度时,每吨发泡混凝土可固定37 kg CO2,在不降低试块强度前提下,每吨发泡混凝土可固定61 kg CO2
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任国宏
廖洪强
程芳琴
闫志华
关键词:  发泡混凝土  碳酸化反应  CO2  电石渣    
Abstract: The foaming concrete and CO2 carbonation reaction can not only improve the concrete performance but also achieve the effect of reducing the mineralization of CO2. The effects of CO2 reaction time on the compressive strength of foamed concrete blocks after immersion in unsoaked, water immersed and calcium carbide slag were investigated. XRD, TGA and SEM were used to analyze the mineral composition of the test blocks. The thermogravimetric properties and micromorphology characteristics were characterized. The results show that the compressive strength of the foamed concrete test block increases with the increase of carbonation reaction time, and the strength of the test block of alkali leaching is up to 6.5 MPa, which is lower than that of the uncarbonated reaction test. The block strength increases by 80.6%. The results of SEM analysis show that the pore wall structure of the foamed concrete test block changes significantly with the prolongation of the carbonation reaction time. The whole process shows the transformation process of “grain-like compaction and granulation looseness”, which may lead to the compressive strength of the test block. The intrinsic cause of the phenomenon of “first increase and then decrease” occurs with the prolongation of carbonation time. The TGA curve results show that when the test block reaches the highest compressive strength, the CO2 can be fixed at 37 kg per ton of foamed concrete. Under the premise of not reducing the strength of the test block, the CO2 can be fixed at 61 kg per ton of foamed concrete.
Key words:  foamed concrete    carbonation reaction    carbon dioxide    carbide slag
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TK09  
基金资助: 山西省重点研发(MC2016-02)
通讯作者:  13910766805@139.com   
作者简介:  任国宏,2016年9月到2019年7月就读于山西大学,研究方向为固体废弃物资源化。
廖洪强,清华大学博士后,教授级高级工程师。国内节能环保及固废资源化领域的知名专家;后进入北京大学和山西大学从事节能环保与固废资源综合利用新技术开发与产业化推广应用工作10余年;承担过国家科技部支持的“863”课题、国家“十一五”科技支撑课题、国家“十二五”科技支撑课题。
引用本文:    
任国宏, 廖洪强, 程芳琴, 闫志华. 发泡混凝土碱浸试块碳酸化增强固碳特性研究[J]. 材料导报, 2019, 33(Z2): 300-303.
REN Guohong, LIAO Hongqiang, CHENG Fangqin, YAN Zhihua. Study on Carbon Sequestration Characteristics Enhancing by Carbonation Reactionof CO2 for Foamed Concrete Block with Alkali Leaching. Materials Reports, 2019, 33(Z2): 300-303.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/300
1 梁晓杰,叶正茂,常钧.硅酸盐学报,2012,40(2),226.
2 Otsuki N, Miyazato S, Yodsudjai W. Journal of Materials in Civil Engineering,2003,15(5),443.
3 Khan M I, Lynsdale C J. Cement & Concrete Research,2002,32(1),123.
4 Sim J, Park C. Waste Management,2011,31(11),2352.
5 张林菊.碳化养护钢渣制备建筑材料.硕士学位论文,济南大学,2009.
6 Bertolini L, Carsana M, Redaelli E. Journal of Cultural Heritage,2008,9(4),376.
7 Rodrigueznavarro C, Elert K, evík R. Crystengcomm,DOI: 10.1039/C6CE01202G.
8 张磊,杨鼎宜.混凝土,2005(8),44.
9 周明杰,王娜娜,赵晓艳,等.混凝土,2009(4),104.
10 Ridgway C J, Schoelkopf J, Pac G. Transport in Porous Media,2011,86(3),945.
11 Sagartzazu X, Hervella-Nieto L, Pagalday J M. Archives of Computational Methods in Engineering,2008,15(3),311.
12 Pac G, Koivunen K. Transport in Porous Media,2010,84(3),587.
13 杨南如,岳文海,等.无机非金属材料图谱手册.武汉工业大学出版社2000.
[1] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[2] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[3] 陈涛, 薛松柏, 孙子建, 翟培卓, 陈卫中, 郭佩佩. CO2气体保护焊短路过渡控制技术的研究现状与展望[J]. 材料导报, 2019, 33(9): 1431-1442.
[4] 任国宏, 廖洪强, 高宏宇, 闫志华, 程芳琴. 粉煤灰-电石渣制浆矿化的固碳增强特性[J]. 材料导报, 2019, 33(21): 3556-3560.
[5] 赵红涛, 王树民, 刘志江, 张曼. 磷石膏矿化固定CO2制备高纯高白CaCO3[J]. 材料导报, 2019, 33(18): 3031-3034.
[6] 苏英, 邱慧琼, 贺行洋, 杨进, 王迎斌, 曾三海, Bohumír Strnadel. 弱碱激发超细粉煤灰水化产物结构分析[J]. 材料导报, 2019, 33(14): 2376-2380.
[7] 王倩, 谢海波. DBU/DMSO/CO2溶剂体系中纤维素聚离子液体的合成及性质[J]. 材料导报, 2019, 33(10): 1768-1772.
[8] 杨贵荣,宋文明,董雪娇,张玉福,王富强,李 健,马 颖. CO2分压对20#钢在CO2/H2O气液两相塞状流中腐蚀行为的影响[J]. 《材料导报》期刊社, 2018, 32(9): 1557-1563.
[9] 王明, 李星. 超临界二氧化碳技术制备的聚丙烯/三元乙丙橡胶开孔发泡材料的吸油行为[J]. 《材料导报》期刊社, 2018, 32(8): 1236-1240.
[10] 应建行, 刘智峰, 贺登峰, 陈忠仁. LLDPE/EPDM共混物的超临界CO2微孔发泡研究[J]. 《材料导报》期刊社, 2018, 32(4): 616-620.
[11] 王亚丽, 陈美娜, 崔素萍, 马晓宇. 稻壳灰-电石渣复合吸收剂的脱硫脱硝性能[J]. 材料导报, 2018, 32(22): 3995-3999.
[12] 刘泽伟, 闫思佳, 夏子皓, 田霖, 刘煜康, 王竟成, 胡建杭. 温度和CO2对热解成型生物质炭孔隙结构和表面分形维数的影响[J]. 材料导报, 2018, 32(17): 2925-2931.
[13] 史才军, 王吉云, 涂贞军, 王德辉. CO2养护混凝土技术研究进展[J]. CLDB, 2017, 31(5): 134-138.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed