Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 261-266    
  无机非金属及其复合材料 |
基于核壳结构缓释剂和抗氧化剂的新型复合沥青抗老化剂研究
赵可成, 陈宇, 黄考取
浙江交工集团有限公司设计分公司,杭州 310051
Development of Long-lasting Antiaging Additives for Recycled Asphalt Binders
ZHAO Kecheng, CHEN Yu, HUANG Kaoqu
Design Company of Zhejiang Communications Construction Group Co., Ltd., Hangzhou 310051
下载:  全 文 ( PDF ) ( 2896KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 我国每年的沥青路面回收料已经接近亿吨,同时回收料的使用率不断提高。沥青旧料回收利用的关键步骤是老化沥青的再生过程,而其中添加剂的选择和使用是影响再生后沥青混合料工程性质和沥青路面路用性能的关键因素。传统的沥青再生剂可以得到瞬时的沥青还原效果,但是无法延长再生后沥青的使用寿命。相较而言,用于回收沥青的长效抗老化剂是提高再生沥青路面耐久性的有效解决方案,但目前鲜有抗老化剂在沥青再生工艺中的实验室研究和实际应用。
本研究探索了利用一种抗氧剂和一种缓释剂作为复合抗老化添加剂,通过实验室模拟沥青长期老化,评价其对典型回收沥青的抗氧化老化效果。选用的抗氧化剂分别为Irganox和木质素磺酸盐,同时合成的缓释剂分别为包裹食用植物油和商业再生剂油的聚苯乙烯微胶囊。未改性的基础回收沥青和四种抗氧化剂改性沥青通过压力反应釜进行60 h的长期高温高压老化,并利用动态流变剪切仪(DSR)对未改性沥青和抗老化剂改性沥青老化前后的粘度、衍生延度和SHRP流变指标进行分析。
结果表明,本研究采用的四种复合抗老化剂均可以有效控制沥青老化过程中的物理性质变化。商业再生剂微胶囊和木质素磺酸钠的复合添加剂表现出最好的效果,可以减缓22.4%的沥青老化硬化速率和27%的延度下降速率,而商业再生剂微胶囊和Irganox的复合抗老化剂次之,可以减缓21.3%的沥青老化速率和19.5%的延度下降速率。相比之下,由植物油再生剂微胶囊和抗氧化剂组成的抗老化剂只减缓了10%的沥青粘度上升速率并且加快了沥青延度的下降趋势,但可以提供相对较高的车辙因子。最后,通过对沥青老化过程中红外光谱的变化研究,发现抗老化剂对羰基和亚砜产物的生成控制是抑制沥青物理老化的驱动力,四种抗老化剂均显示了瞬时的亚磺酰基氧化反应控制作用。
本工作所建议的抗老化剂方案解决了以往沥青抗老化剂缺乏长效性的缺点,能够有效延长再生后沥青路面的路用寿命。同时本研究提供的复合抗老化剂组成思路可以选用其他环保材料,以帮助推广新型抗老化剂在沥青回收路面可持续再生过程中的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵可成
陈宇
黄考取
关键词:  沥青  抗老化  抗氧化剂  缓释剂  微胶囊  流变性质  官能团    
Abstract: In China, about one hundred million of reclaimed asphalt pavement (RAP) are produced every year. Worldwide, the length of asphalt pavements and amount of recycled asphalt pavement also grow continuously. Additives have been used to improve the performance of asphalt pavements with high RAP content, such as rejuvenation agent and antiaging agent. Compared with the rejuvenators, antiaging modifiers receive little attention in current asphalt recycling industry because the conventional antiaging agents provide limited anti physical hardening performance and are usually cost-intensive. Therefore, there is a great need to develop effective and long-lasting antiaging additives for recovered asphalt binders.
This study aims to develop new complex asphalt antiaging agents that contain both antioxidants and microcapsules in order to prevent the physical hardening of asphalt binder by both obstructing the chemical oxidation reaction and sustainably releasing the rejuvenation oil. The antioxidants involve the commercial antioxidant Irganox and sodium lignosulfonate. The microcapsules are prepared by polystyrene-shell and two type of oil-core materials: cooking vegetable oil and commercial rejuvenation oil using phase separation method. SEM shows that the microcapsules are successfully synthesized.
The base asphalt binder and modified asphalt binders are treated by a pressure aging vessel (PAV) to simulate the long-term aging of asphalt binder, then measured by the dynamic shear rheometer (DSR). Results show that the four antiaging additives developed can effectively slow down the physical hardening of asphalt binders. Overall, the additive with microcapsules containing rejuvenation oil and sodium lignosulfonate demonstrates a superior antiaging performance, which reduces 22.4% of the asphalt hardening rate and 27% loss rate of asphalt ductility. The second ranked antiaging additive includes the microcapsules with commercial rejuvenation oil core and Irganox antioxidant, which results in a 21.3% reduction of physical hardening and 19.5% reduction of losing durability. By comparison, the aging additives containing cooking vegetable oil microcapsules present a lower performance in reduction the viscosity of asphalt binder and conversely increase the loss rate of asphalt ductility. On the other hand, the two antiaging additives containing rejuvenation oil microcapsule provide a better fatigue resistance but a lower rutting stabi-lity, which is opposite to the antiaging additives containing cooking oil.
By analyzing the change of functional groups during oxidation process, results indicate that the control of carbonyl and sulfoxide products is the key to the physical anti-aging of asphalt binder, and the prevention of physical aging is more relied on controlling the production of sulfoxides.
The design of antiaging agents in this study is proved to provide sustainable softening and rejuvenation effects to recycled asphalt binder, and has high potential to be developed into mature technologies that benefit the road and highway construction industry as well as environmental conservation.
Key words:  asphalt    antiaging    antioxidant    slow-releasing agent    microcapsule    rheological property    functional group
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  U414  
通讯作者:  kecheng.zhao@outlook.com   
作者简介:  赵可成,浙江交工集团股份有限公司设计分公司工程师。2012年9月至2018年12月,在中国香港理工大学获得环境工程专业硕士学位和土木工程专业博士学位。发表SCI学术期刊12篇,其中第一作者3篇,同时发表国际会议期刊论文和专著9篇,申请国家发明专利2项。研究方向主要包括沥青材料老化、再生和抗老化过程中的物理化学性质和微观性质表征,先进改性沥青材料、道路复合材料的研发及新型道路材料在实际路面工程中的应用。
引用本文:    
赵可成, 陈宇, 黄考取. 基于核壳结构缓释剂和抗氧化剂的新型复合沥青抗老化剂研究[J]. 材料导报, 2019, 33(Z2): 261-266.
ZHAO Kecheng, CHEN Yu, HUANG Kaoqu. Development of Long-lasting Antiaging Additives for Recycled Asphalt Binders. Materials Reports, 2019, 33(Z2): 261-266.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/261
1 黄颂昌.中国公路学会养护与管理分会第九届学术年会.重庆,2019.
2 韦万峰,郭鹏,唐伯明.材料导报:综述篇,2017,31(6),109.
3 Presti D L, del Barco Carrión A J, Airey G, et al. Journal of cleaner production,2016,131,43.
4 倪小军,陈仕周,凌天清.重庆交通学院学报,2004(5),39.
5 King G, King H, Pavlovich R D, et al. Journal of the Association of Asphalt Paving Technologists,1999,68,32.
6 马峰,李晓彤,傅珍.材料导报:综述篇,2015,29(7),93.
7 Zaumanis M, Mallick R B, Poulikakos L, et al.Construction and Buil-ding Materials,2014,71,538.
8 Mohammadafzali M, Ali H, Musselman J A, et al. In: Airfield and Highway Pavements.2015,pp.617.
9 Wang Y. Construction and Building Materials,2016,120,335.
10 Denisov E T, Afanas’ ev I B. In: Oxidation and antioxidants in organic chemistry and biology, CRC Press,2005.
11 Meurant G. In: Atmospheric oxidation and antioxidants. Elsevier,2012.
12 孙思敖,冯振刚,栗培龙,等.石油沥青,2018,32(5),1.
13 Cong P, Wang J, Li K, et al. Fuel,2012,97,678.
14 Apeagyei A K. Construction and Building Materials,2011,25(1),47.
15 崔亚楠,刘涛.建筑材料学报,2018,21(4),626.
16 Ouyang C, Wang S, Zhang Y, et al. Polymer degradation and stability,2006,91(4),795.
17 Kuang D, Yu J, Feng Z, et al. Construction and Building Materials,2014,66,209.
18 Yu J Y, Feng P C, Zhang H L, et al. Construction and Building Mate-rials,2009,23(7),2636.
19 张可达,徐冬梅,王平.功能高分子学报,2001(4),474.
20 Dowding P J, Atkin R, Vincent B, et al. Langmuir,2004,20(26),11374.
21 高光涛,金海龙,张隐西.聚苯乙烯改性沥青高温性能研究.中国塑料,2007(7),52.
22 Yow H N, Routh A F. Soft Matter,2006,2(11),940.
23 Loxley A, Vincent B. Journal of Colloid and Interface Science,1998,208(1),49.
24 Philippou J L, Johns W E, Zavarin E, et al. Bonding of particleboard using hydrogen peroxide, lignosulfonates, and furfuryl alcohol: The effect of process parameters. Forest Products Journal,1982.
25 Sroka Z, Cisowski W. Food and Chemical Toxicology,2003,41(6),753.
26 Kelland M A. Production chemicals for the oil and gas industry. Chapter 4: Asphaltene Control. CRC Press,2014.
27 Glover C J, Davison R R, Domke C H, et al. Development of a new method for assessing asphalt binder durability with field validation. Texas Dept Transport,2005,1872.
28 祁文洋,李立寒,汪于凯.建筑材料学报,2014,17(3),543.
29 Petersen J C. A review of the fundamentals of asphalt oxidation: chemical, physicochemical, physical property, and durability relationships. Transportation Research Circular,(E-C140),2009.
30 Petersen J C, Glaser R. Road Materials and Pavement Design,2011,12(4),795.
31 庞琦,孙国强,孙大权.石油沥青,2016,30(3),54.
32 Ouyang C, Wang S, Zhang Y, et al. Polymer Degradation and Stability,2006,91(4),795.
[1] 宋国林, 张泽, 沈成柱, 范鑫, 谢俊伟, 唐国翌. 低温等离子体改性碳纳米管对再生沥青性能的影响[J]. 材料导报, 2020, 34(2): 2052-2057.
[2] 王兆仑, 刘朝晖, 高建华. 高粘度抗滑封装薄层沥青路面长效协同作用机理分析[J]. 材料导报, 2019, 33(Z2): 242-246.
[3] 张庆, 侯德华, 史纪村. 橡胶沥青的微观表征方法及其微观特性综述[J]. 材料导报, 2019, 33(Z2): 247-253.
[4] 杜华川, 王延宁, 何苗苗, 林梓锋, 吕正宗. 有机缓凝剂对水泥改性乳化沥青胶浆的改善效果研究[J]. 材料导报, 2019, 33(Z2): 254-260.
[5] 仇中柱, 李晟南, 魏丽东, 秦承芳, 姚远, 姜未汀, 郑莆燕, 张涛. 相变微胶囊悬浮液中颗粒润湿性对导热系数的影响[J]. 材料导报, 2019, 33(Z2): 623-626.
[6] 李宏英, 王鸿博, 傅佳佳, 王文聪. 薄荷油微胶囊整理对涤纶织物服用性能的影响[J]. 材料导报, 2019, 33(z1): 510-514.
[7] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[8] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[9] 王岚, 李冀, 桂婉妹. 表面活性剂对温拌胶粉改性沥青高低温性能的影响[J]. 材料导报, 2019, 33(6): 986-990.
[10] 李微, 韩森, 黄啟波, 姚腾飞, 徐鸥明. 细粒式薄表层沥青混合料中粗集料的骨架特性[J]. 材料导报, 2019, 33(4): 617-624.
[11] 毕洁夫, 郑南翔, 董是, 吴晓鑫. 基于大样本的沥青与粗集料原料对混合料水稳定性的影响分析[J]. 材料导报, 2019, 33(24): 4098-4104.
[12] 张喆, 方健, 席丽敏. 基于响应面优化的石蜡相变微胶囊的性能评价[J]. 材料导报, 2019, 33(24): 4181-4187.
[13] 金鑫, 郭乃胜, 尤占平, 谭忆秋. 聚氨酯改性沥青研究现状及发展趋势[J]. 材料导报, 2019, 33(21): 3686-3694.
[14] 杨刘琨, 潘志华, 徐赛赛, 刘劲松. 微胶囊在修补砂浆中延迟释放早强剂的应用及性能分析[J]. 材料导报, 2019, 33(2): 246-250.
[15] 朱亚明, 赵春雷, 刘献, 赵雪飞, 高丽娟, 程俊霞. 煤沥青中甲苯可溶物的基础物性研究[J]. 材料导报, 2019, 33(2): 368-372.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed