Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 125-129    
  无机非金属及其复合材料 |
不同形貌CeO2基纳米复合材料的制备及应用研究进展
刘艳1,2, 宫庆华2, 周国伟2
1 枣庄科技职业学院,滕州 277500;
2 齐鲁工业大学化学与制药工程学院,山东省高校轻工精细化学品重点实验室,济南 250353
Progress in Preparation and Application of CeO2-based Nanocomposites withDifferent Morphologies
LIU Yan1,2, GONG Qinghua2, ZHOU Guowei2
1 Zaozhuang Vocational College of Science & Technology, Tengzhou 277500;
2 Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353
下载:  全 文 ( PDF ) ( 1748KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 CeO2由于其化学性质稳定、无毒、制备方法简单,逐渐成为一种新型的光电材料。CeO2与其他材料复合后,能进一步提高复合材料作为光催化剂和电极材料的应用性能。本文综述了不同形貌CeO2基纳米复合材料的制备,如纳米球、立方体、纳米管和纤维状等,以及其在光催化、超级电容器和锂离子电池等领域中的最新研究进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘艳
宫庆华
周国伟
关键词:  CeO2  纳米复合材料  光催化  锂离子电池    
Abstract: Cerium oxide has become a new kind of photoelectric material due to the chemical stability, non-toxicity and simple preparation. When combined with other materials, the performance of the composite materials as photocatalysts and electrode materials can be further improved. In this paper, the preparation of CeO2-based nanocomposites with different morphologies, such as nanospheres, cubes, nanotubes and fibers, and their latest research progress in photocatalysis, supercapacitors and lithium-ion batteries are reviewed.
Key words:  CeO2-based    nanocomposites    photocatalysis    lithium-ion batteries
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TB33  
基金资助: 国家自然科学基金 (51572124);山东省重点研发计划 (2019GGX102070);济南市高校院所创新团队项目(2018GXRC006)
通讯作者:  guoweizhou@hotmail.com; gwzhou@qlu.edu.cn   
作者简介:  刘艳,硕士,副教授,现任职于枣庄科技职业学院。曾获得山东省职业教育优秀科研成果一等奖、山东省教学成果三等奖、枣庄市科技进步二等奖、枣庄市自然科学学术成果一等奖。目前主要研究领域为有序介孔材料的制备和应用。
周国伟, 博士,教授,博士研究生导师,山东省有突出贡献中青年专家,享受国务院政府特殊津贴。2002和2005年分别在韩国釜庆大学和中国香港科技大学从事博士后研究。主要从事介孔材料的可控制备及在催化、能源存储与转化等领域研究。主持国家自然科学基金3项,在 Chemical Communications, Journal of Materials Chemistry, Chemical Engineering Journal等期刊上发表SCI收录论文90余篇。曾获山东省科学技术奖二等奖等奖励,获国家授权发明专利30余项。
引用本文:    
刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
LIU Yan, GONG Qinghua, ZHOU Guowei. Progress in Preparation and Application of CeO2-based Nanocomposites withDifferent Morphologies. Materials Reports, 2019, 33(Z2): 125-129.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/125
1 Liu W, Feng L J, Zhang C, et al. Journal of Materials Chemistry A,2013,1(23),6942.
2 Yang Z J, Han D Q, Ma D L, et al. Crystal Growth & Design,2010,10(1),291.
3 Liu W, Liu X F, Feng L J, et al. Nanoscale,2014,6(18),10693.
4 Liu W, Tang K, Lin M, et al. Nanoscale,2016,8(18),9521.
5 Zeng M, Li Y Z, Mao M Y, et al. ACS Catalysis,2015,5(6),3278.
6 Xu L, Song H W, Dong B A, et al. Inorganic Chemistry,2010,49(22),10590.
7 Maheswari N, Muralidharan G. Dalton Transactions,2016,45(36),14352.
8 Wang X, Wang T M, Liu D, et al. Industrial & Engineering Chemistry Research,2016,55(4),866.
9 Bai Y, Tang Y, Wang Z H, et al. Solid State Ionics,2015,272,24.
10 Murugan R, Ravi G, Vijayaprasath G, et al. Physical Chemistry Chemical Physics,2017,19(6),4396.
11 Yang W T, Wang X, Song S Y, et al. Chem,2019,5(7),1743.
12 Chen G Z, Rosei F, Ma D L. Nanoscale,2015,7(13),5578.
13 Chuang F Y, Yang S M. Journal of Colloid and Interface Science,2008,320(1),194.
14 Padmanathan N, Selladurai S. Ionics,2014,20(3),409.
15 Kumar E, Selvarajan P, Muthuraj D. Journal of Materials Science,2012,47(20),7148.
16 Wang S X, Huang Z H, Wang J H, et al. Journal of Thermal Analysis and Calorimetry,2012,107(3),1199.
17 Kou T Y, Si C H, Pinto J, et al. Nanoscale,2017,9(23),8007.
18 Zhao L L, Zhang Z P, Li Y S, et al. Applied Catalysis B: Environmental,2019,245,502.
19 Liu W, Wang W Z, Tang K, et al. Catalysis Science & Technology,2015,6(7),2427.
20 Wang Y, Chen Z X, Lei T, et al. Advanced Energy Materials,2018,8(16),1703453.
21 Xue W J, Yan Q B, Xu G Y, et al. Nano Energy,2017,38,12.
22 Lou X W, Yuan C, Archer L A. Advanced Materials,2007,19(20),3328.
23 Zhou G M, Zhao Y B, Manthiram A. Advanced Energy Materials,2015,5(9),1402263.
24 Li N, Zhao H Y, Zhang Y, et al. CrystEngComm,2016,18(22),4158.
25 Yang J D, Wang J X, Zhu L, et al. Ceramics International,2018,44(18),23073.
26 Gong Q H, Li Y J, Huang H, et al. Chemical Engineering Journal,2018,344,290.
27 Gong Q H, Gao T T, Huang H, et al. Inorganic Chemistry Frontiers,2018,5(12),3197.
28 Wang X, Liu D P, Li J Q, et al. NPG Asia Materials,2015,7(1),e158.
29 Zhen J M, Wang X, Liu D P, et al. Chemistry-A European Journal,2014,20(15),4469.
30 Liu Y J, Li T T, Chen W W, et al. RSC Advanced,2015,5(16),11733.
31 Li W, Feng X L, Zhang Z, et al. Advanced Functional Materials,2018,28(49),1802559.
32 Wang A L, Xu H, Feng J X, et al. Journal of the American Chemical Society,2013,135(29),10703.
33 Zhu J, Huo X H, Liu X Q, et al. ACS Applied Materials & Interfaces,2016,8(1),341.
34 Shi X, Zhou G W. Chemical Research in Chinese Universities,2017,33(6),939.
35 Zhu F F, Chen G Z, Sun S X, et al. Journal of Materials Chemistry A,2013,1,288.
36 Zhang J M, Chen G Z, Chaker M, et al. Applied Catalysis B: Environmental,2013,132-133,107.
37 Xu H, Wang A L, Tong Y X, et al. ACS Catalysis,2016,6(8),5198.
38 Bocchetta P, Santamaria M, Quarto F D. Electrochemical and Solid-State Letters,2008,11(3),K27.
39 Fuentes R O, Acuna L M, Zimicz M G, et al. Chemistry of Materials,2008,20(23),7356.
40 Xia C, Chen W, Wang X B, et al. Advanced Energy Materials,2015,5(8),1401805.
41 Baker C O, Huang X W, Nelson W, et al. Chemical Society Reviews,2017,46(5),1510.
42 Lu X F, Chen X Y, Zhou W, et al. ACS Applied Materials & Interfaces,2015,7(27),14843.
43 Cui J W, Zhang X Y, Tong L, et al. Journal of Colloid and Interface Science,2015,3(19),10425.
44 Yang Z M, Hou S C, Huang G F, et al. Materials Letters,2014,133,109.
45 Chae B W, Amna T, Hassan M S, et al. Advanced Powder Technology,2017,28(1),230.
46 Zou L L, Wang Q J, Shen X, et al. Applied Surface Science,2015,332,674.
47 Yoon K, Yang Y, Lu P, et al. Angewandte Chemie International Edition,2012,51(38),9543.
48 Yang J D, Wang J X, Zhu L, et al. Materials Letters,2019,234,331.
49 Arul N S, Mangalaraj D, Ramachandran R, et al. Journal of Materials Chemistry A,2015,3,15248.
50 Sun B, Zhou G W, Gao T T, et al. Applied Surface Science,2016,364,322.
51 Wang H Q, Gong Q H, Huang H, et al. Materials Research Bulletin,2018,107,397.
52 Maiti S, Dhawa T, Mallik A K, et al. Sustainable Energy & Fuels,2017,1(2),288.
53 Yuan C P, Wang H J, Liu J Q, et al. Journal of Colloid and Interface Science,2017,494,274.
[1] 张瑞阳, 李成金, 张艾丽, 周莹. 整体式光催化材料的制备及应用研究进展[J]. 材料导报, 2020, 34(3): 3001-3016.
[2] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[3] 肖洒, 谈恒, 吴珊妮, 曾敏, 熊春荣. CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇[J]. 材料导报, 2020, 34(2): 2005-2009.
[4] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[5] 刘大波, 苏向东, 赵宏龙. 光催化分解水制氢催化剂的研究进展[J]. 材料导报, 2019, 33(Z2): 13-19.
[6] 刘畅, 张志宾, 王有群, 钟玮鸿, 刘云海. 基于g-C3N4异质结复合材料光催化降解污染物的研究进展[J]. 材料导报, 2019, 33(Z2): 104-112.
[7] 郑孝源, 赵子龙, 任志英. 碳掺杂TiO2纳米管的制备和表征及在污水处理方面的应用[J]. 材料导报, 2019, 33(Z2): 113-115.
[8] 梁辰, 吴艳青, 王大伟, 王晗, 刘乐乐, 赵丕琪. 纳米TiO2光催化水泥基材料的研究进展[J]. 材料导报, 2019, 33(Z2): 267-272.
[9] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[10] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[11] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[12] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[13] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[14] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[15] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed