Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 104-112    
  无机非金属及其复合材料 |
基于g-C3N4异质结复合材料光催化降解污染物的研究进展
刘畅, 张志宾, 王有群, 钟玮鸿, 刘云海
东华理工大学核资源与环境国家重点实验室,南昌 330013
Progress in Photocatalytic Degradation of Pollutants Based on g-C3N4 HeterogeneousJunction Composites
LIU Chang, ZHANG Zhibin, WANG Youqun, ZHONG Weihong, LIU Yunhai
State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013
下载:  全 文 ( PDF ) ( 3143KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着现代工业的迅速发展,向环境中排放的有机物及重金属污染物与日俱增,光催化降解法是一种清洁、高效、低成本的处理手段。作为新兴非金属可见光驱动催化剂的g-C3N4具有廉价易得、无毒无害等优点,但存在可见光响应范围较窄、光生电子-空穴对复合率较高等明显问题,导致量子产率低,光催化效率不高。
研究发现,部分金属硫化物、金属氧化物以及三元化合物等不同类型的半导体能够与g-C3N4形成异质结构,通过调控半导体的形貌能够在不同程度上与g-C3N4构成良好的晶格匹配,这有利于电子在两种或多种半导体之间传输。通过构建异质结构能够有效地降低带隙宽度,拓宽光响应范围,减小光生电子-空穴复合率,提高光催化效率。
本文分类讲述了近几年常用的基于g-C3N4的复合半导体材料,它们都不同程度地实现了电子与空穴对的良好分离,有效地消除了各类有机物及重金属的污染,是具有应用价值的光催化剂候选者。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘畅
张志宾
王有群
钟玮鸿
刘云海
关键词:  g-C3N4  异质结  有机物  重金属  光催化    
Abstract: With the rapid development of modern industry, more and more organic and heavy metal pollutants are discharged into the environment. Photocatalytic degradation is a clean, efficient and low-cost treatment method. g-C3N4, as an emerging catalyst driven by non-metallic visible light, has many advantages, such as cheap and easy to obtain, non-toxic and harmless. However, there are obvious problems, such as narrow response range of visible light, high photoelectron-hole recombination rate, resulting in low quantum yield and low photocatalytic efficiency.
Studies have found that different types of semiconductors, such as partial metal sulfide, metal oxide and ternary compound, can form heterogeneous structures with g-C3N4. By regulating the morphology of semiconductors, they can form a good lattice match with g-C3N4 to different degrees, which is conducive to the transfer of electrons between two or more semiconductors. By constructing heterogeneous structures, the band gap width can be effectively reduced, the optical response range can be widened, the photoelectron-hole recombination rate can be reduced, and the photocatalytic efficiency can be improved.
In this paper, the g-C3N4-based composite semiconductor materials commonly used in recent years are described. They all achieve good separation of electron and hole pair to varying degrees, and effectively eliminate the pollution of various organic compounds and heavy metals. Therefore, they are photocatalyst candidates with application value.
Key words:  g-C3N4    heterostructure    organic    heavy metal    photocatalysis
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  O613.71  
基金资助: 国家自然科学基金(21561002;21866004;21866003)
通讯作者:  walton_liu@163.com   
作者简介:  刘畅,2017年毕业于西南科技大学,获得工学学士学位。现为东华理工大学核科学与工程学院硕士研究生,在刘云海教授的指导下进行研究。目前主要的研究领域是放射性核素分离与富集。
刘云海,东华理工大学核科学与工程学院教授,博士研究生导师。2008年6月于武汉大学高分子化学与物理专业获得博士学位。主要从事新型功能材料设计与制备、放射性核素吸附分离与污染治理等领域的科研工作,在J Hazard Mater、Chem Eng J、Appl Surf SciJ Radioanal Nucl Chem等期刊上发表SCI检索的学术论文五十余篇,获授权发明专利三项。
引用本文:    
刘畅, 张志宾, 王有群, 钟玮鸿, 刘云海. 基于g-C3N4异质结复合材料光催化降解污染物的研究进展[J]. 材料导报, 2019, 33(Z2): 104-112.
LIU Chang, ZHANG Zhibin, WANG Youqun, ZHONG Weihong, LIU Yunhai. Progress in Photocatalytic Degradation of Pollutants Based on g-C3N4 HeterogeneousJunction Composites. Materials Reports, 2019, 33(Z2): 104-112.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/104
1 郭燕妮,方增坤,胡杰华,等.工业水处理,2011,31(12),9.
2 张志宾,熊国宣,刘云海,等.东华理工大学学报:自然科学版,2013,36(4),400.
3 Ye L J, Wang D, Chen S J. ACS Applied Materials & Interfaces,2016,8(8),5280.
4 Ge L, Han C C, Xiao X L, et al. International Journal of Hydrogen Energy,2013,38(17),6960.
5 Ji D L, Zhu J Z, Ji M, et al. Research on Chemical Intermediates,2016,42(6),5413.
6 姜淑娟,宋少青,卢长海,等.东华理工大学学报:(自然科学版),2017,40(1),88.
7 Wen J Q, Xie J, Chen X B, et al. Applied Surface Science,2017,391,72.
8 Patra A K, Dutta A, Bhaumik A. ACS Applied Materials & Interfaces,2012,4(9),5022.
9 Hashimoto K, Irie H, Fujishima A. Japanese Journal of Applied Physics,2005,44(12),8269.
10 Nurlaela E, Ouldchikh S, Llorens I, et al. Chemistry of Materials,2015,27(16),5685.
11 Umezawa N, Shuxin O, Ye J. Physical Review B,2011,83(3),287.
12 Wang L, Zhang C B, Gao F, et al. Chemical Engineering Journal,2017,314,622.
13 Mohamed H H. Applied Catalysis A:General,2017,541,25.
14 Liu D, Zhang M W, Xie W J, et al. Catalysis Science Technology,2016,6(23),8309.
15 Wang X C, Maeda K, Thomas A, et al. Nature Materials,2008,8(1),76.
16 Wang H, Yuan X Y, Wu Y, et al. Advance In Colloid and Interface Science,2013,19,195.
17 Song X F, Hu J L, Zeng H B. Journal of Materials Chemistry C,2013,1(17),2952.
18 Zhang Y C, Zhang Q, Shi Q W, et al. Separation and Purification Technology,2015,142,251.
19 Yang Y, Guo Y N, Liu F Y, et al. Applied Catalysis B Environmental,2013,142(2013),828.
20 Qiu J H, Feng Y, Zhang X F, et al. RSC Advances,2017,7(18),10668.
21 Yu J G, Wang K, Xiao W, et al. Physical Chemistry Chemical Physics,2014,16(23),11492.
22 Zhang L G, Chen X F, Guan J, et al. Materials Research Bulletin,2013,48(9),3485.
23 Liu G, Niu P, Sun C H, et al. Journal of the American Chemical Society,2010,132(33),11642.
24 Li J S, Safarzadeh M S, Moats M S, et al. Hydrometallurgy,2012,113,1.
25 Li Y P, Wu S L, Huang L Y, et al. Materials Letters,2014,137,281.
26 Fang J, Fan H, Li M, et al. Chemistry of Material,2015,3,13819.
27 Yan S C, Li Z S, Zou Z G. Langmuir,2010,26(6),3894.
28 Wang Y, Di Y, Antonietti M, et al.Chemistry of Material,2010,22(18),5119.
29 Tonda S, Kumar S, Kandula S. Journal of physical Chemistry C,2014,2(19),6772.
30 Zhang Y C, Zhang Q, Shi Q W, et al. Separation and Purification Technology,2015,142,251.
31 Wang H L, Zhang L S, Chen Z S, et al. Chemical Society Reviews,2014,43(15),5234.
32 Jiang L M, Zhou G, Mi J, et al. Catalysis Communications,2012,24,48.
33 Xu M S, Liang T, Shi M M, et al. Chemical Reviews,2013,113(5),3766.
34 Li Z, Kong C, Lu G X. Journal of Materials Chemistry,2016,120(1),56.
35 Le S K, Jiang T S, Zhao Q. RSC Advances,2016,6(45),38811.
36 Huang X, Zeng Z Y, Zhang H. Chemical Society Reviews,2013,42(5),1934.
37 Ganatra R, Zhang Q. ACS Nano,2014,8(5),4074.
38 Wang Y J, Wang Q S, Zhan X Y, et al. Nanoscale,2013,5(21),10599.
39 Lu X J, Jin Y L, Zhang X Y, et al. Dalton Transactions,2016,45(39),15406.
40 Li J, Liu E Z, Ma Y N, et al. Applied Surface Science,2016,364,694.
41 Peng W C, Li X Y. Catalysis Communications,2014,49,63.
42 Voiry D, Yamaguchi H, Li J, et al. Nature Materials,2013,12(9),850.
43 Maxwell S,Low J, Wageh S, et al. Applied Surface Science,2015,358,196.
44 Huu H, Duy H, Thanh T, et al. Bulletin Korean Chemical Society,2018,39(8),965.
45 Zeng P, Ji X Y, Su Z G, et al. RSC Advances,2018,8(37),20557.
46 Jing L Q, Xu Y G, Chen Z G, et al. ACS Sustainable Chemistry & Engineering,2018,6(4),5132.
47 Yella A, Mugnaioli E, Panthfer M, et al. Angewandte Chemie International Edition,2009,48(35),6426.
48 Zhang Y C, Li J, Zhang M, et al. Environmental Science & Technology,2011,45(21),9324.
49 Sun M, Yan Q, Yan T, et al. RSC Advances,2014,4(59),31019.
50 Chen L L, Chen M, Jiang D L, et al. Journal of Molecular Catalysis A Chemical,2016,425,174.
51 Di T M, Zhu B C, Cheng B, et al. Journal of Catalysis,2017,352,532.
52 Liu Y P, Chen P, Chen Y, et al. RSC Advances,2016,6(54),48571.
53 Zhang Z Y, Huang J D, Zhang M Y, et al. Applied Catalysis B: Environmental,2015,163,298.
54 Jiang F, Yan T T, Chen H, et al. Applied Surface Science,2014,295,164.
55 Xu Y, Zhang W D. European Journal of Inorganic Chemistry,2015,2015(10),1744.
56 Hao R R, Wang G H, Tang H, et al. Applied Catalysis B Environmental,2016,187,47.
57 Jiang X H, Xing Q J, Luo X B, et al. Applied Catalysis B Environmental,2018,228,29.
58 Miranda C, Mansilla H, Obregón S, et al. Journal of Photochemistry and Photobiology A Chemistry,2013,253(2),16.
59 Zang Y P, Li L P, Li X G, et al. Chemical Engineering Journal,2014,246,277.
60 Kumar S, Surendar T, Kumar B, et al. Journal of Physical Chemistry C,2013,117(49),26135.
61 Han C C, Ge L, Chen C F, et al. Applied Catalysis B: Environmental,2014,147,546.
62 Hong Y Z, Jiang Y H, Li C S, et al. Applied Catalysis B: Environmental,2016,180,663.
63 Huang L Y, Xu H, Zhang R X, et al. Applied Surface Science,2013,283,25.
64 Li F T, Zhao Y, Wang Q, et al. Journal of Hazardous Materials,2015,283,371.
65 Liu W, Wang M L, Xu C X, et al. Chemical Engineering Journal,2012,209,386.
66 Xia P F, Zhu B C, Cheng B, et al. ACS Sustainable Chemistry & Engineering,2017,6(1),965.
67 Huang W L, Zhu Q. Computational Materials Science,2008,43(4),1101.
68 Ye L Q, Zan L, Tian L H, et al. Chemical Communications,2011,47(24),6951.
69 Ye L, Liu J Y, Jiang Z, et al. Applied Catalysis B: Environmental,2013,142-143(10),1.
70 He R, Cheng K, Wei Z, et al. Applied Surface Science,2018,49,220
71 Bai Y, Wang P Q, Liu J Y, et al. RSC Advances,2014,4(37),19456.
72 Chen H H, Xu Y M. Applied Surface Science,2014,319,319.
73 Zhu B C, Xia P F, Li Y, et al. Applied Surface Science,2016,391,175.
74 Hideyuki K, Tsubasa S, Tohru S, et al. Industrial & Engineering Chemistry Research,2014,53(19),8018.
75 Wang S M, Li D L, Sun C, et al. Applied Catalysis B Environmental,2014,144,8852.
76 Ge L, Han C C, Liu J. Applied Catalysis B Environmental,2011,108-109,100.
77 Li H P, Liu J Y, Hou W G, et al. Applied Catalysis B: Environmental,2014,160-161,89.
78 Sun L M, Zhao X, Jia C J,et al. Journal of Materials Chemistry,2012,22,23428.
79 Li T T,Zhao L H, He Y M, et al. Applied Catalysis B Environmental,2013,129(17),255.
80 Tada H, Mitsui T, Kiyonaga T, et al. Nuture Materials,2006,5(10),782.
81 Chen Y F, Huang W X, He D L, et al. ACS Applied Materials & Interfaces,2014,6(16),14405.
[1] 张瑞阳, 李成金, 张艾丽, 周莹. 整体式光催化材料的制备及应用研究进展[J]. 材料导报, 2020, 34(3): 3001-3016.
[2] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[3] 肖洒, 谈恒, 吴珊妮, 曾敏, 熊春荣. CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇[J]. 材料导报, 2020, 34(2): 2005-2009.
[4] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[5] 刘大波, 苏向东, 赵宏龙. 光催化分解水制氢催化剂的研究进展[J]. 材料导报, 2019, 33(Z2): 13-19.
[6] 周理想, 黄仕华, 吴锋民. 异质结太阳能电池的仿真模拟研究和界面态密度对效率的影响[J]. 材料导报, 2019, 33(Z2): 28-31.
[7] 郑孝源, 赵子龙, 任志英. 碳掺杂TiO2纳米管的制备和表征及在污水处理方面的应用[J]. 材料导报, 2019, 33(Z2): 113-115.
[8] 刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
[9] 梁辰, 吴艳青, 王大伟, 王晗, 刘乐乐, 赵丕琪. 纳米TiO2光催化水泥基材料的研究进展[J]. 材料导报, 2019, 33(Z2): 267-272.
[10] 蒋芳, 雷婷, 李声剑, 任子旋, 王利莲, 刘萌, 汤立红, 王世雄. 聚合物吸附剂的制备及在水体重金属污染净化应用中的研究进展[J]. 材料导报, 2019, 33(Z2): 526-532.
[11] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[12] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展[J]. 材料导报, 2019, 33(z1): 22-27.
[13] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[14] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[15] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed