Please wait a minute...
材料导报  2019, Vol. 33 Issue (7): 1089-1098    https://doi.org/10.11896/cldb.18030013
  材料与可持续发展(二)——材料绿色制造与加工* |
直流电弧等离子体法制备纳米材料的研究进展
叶凯1,2, 梁风1,2,3, 姚耀春1,2, 马文会1,2,3, 杨斌1,2,3, 戴永年1,2,3
1 昆明理工大学真空冶金国家工程实验室,昆明 650093
2 昆明理工大学云南省有色金属真空冶金重点实验室,昆明650093
3 昆明理工大学省部共建复杂有色金属资源清洁利用国家重点实验室,昆明650093
A Survey on Preparation of Nanomaterials by DC Arc Plasma
YE Kai1,2 , LIANG Feng1,2,3 , YAO Yaochun1,2 , mA Wenhui1,2,3, YANG Bin1,2,3, DAI Yongnian1,2,3
1 The National Engineering Laboratory for Vacuum metallurgy, Kunming University of Science and Technology, Kunming 650093
2 Key Laboratory for Nonferrous Vacuum metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming 650093
3 State Key Laboratory of Complex Nonferrous metal Resources Clear Utilization, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 19052KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米材料由于具有特殊的光学、力学、磁学、电学、超导、催化等特性而被广泛应用于电子、机械装置、药物传输、催化剂等众多领域。直流电弧等离子体法是一种制备高纯度纳米材料的有效手段,通过在两电极之间的电弧放电产生高温,使反应室中的气体变为等离子体态,原材料蒸发分解成气态原子,过饱和的蒸汽流动到反应室中温度较低的部位,并重新成核生长成所需的纳米粒子。使用直流电弧等离子体法制备纳米材料具有操作简单、成本低、合成速度快、产物纯度高、环境友好等优点。
在电弧法制备纳米材料的过程中,改变相关实验参数,会对产物的粒径、形貌等特性产生影响;特别是在制备碳纳米材料时,改变实验条件还会得到如碳纳米管、石墨烯、碳纳米角等不同形貌的碳纳米材料。因此,需要从纳米颗粒的生长机理入手,找到不同纳米材料的最佳合成条件,实现其可控制备。如今,电弧法制备纳米材料的研究重点已由单纯的制备方法研究发展到深入分析其机理与探究可控合成的工艺条件,从而实现粒径可控、颗粒分布均匀纳米材料的规模化制备。此外,电弧法相比其他方法具有独特的优点,探索用电弧法制备新型纳米材料也是目前研究的焦点。
近年来,使用电弧法制备纳米材料取得了众多成果。在碳纳米材料领域,不但实现了富勒烯、碳纳米管的制备,而且实现了高品质单层石墨烯和碳纳米角的制备。在金属纳米材料领域,制备出了高品质的纳米银粉和镍粉等。此外,难熔金属由于熔点高,使用其他方法难以制备出相关种类的纳米材料。而电弧区温度可以达到104 K,使用电弧法可制备出mo、Cr、V、W等多种难熔金属的纳米材料。在陶瓷纳米材料领域,成功制备了SiC、TiC等高性能陶瓷纳米材料。实现电弧法可控制备纳米材料需要对纳米颗粒的形成及生长机理进行深入探究,相关工作也在不断推进。最近,研究者们使用数值模拟等辅助手段来模拟电弧过程,可以得到电弧区的温度、压力、速度分布情况,模拟的实验结果对解释纳米材料的生长机理起到非常重要的作用。
本文主要介绍了使用直流电弧等离子体法制备碳纳米材料、金属纳米材料及陶瓷纳米材料的研究进展,并对纳米粒子的形成机理做了深入分析;阐述了电弧等离子法制备纳米材料存在的问题,并提出了相应的解决策略;最后,对电弧法制备纳米材料向着大规模、低成本可控制备的发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶凯
梁风
姚耀春
马文会
杨斌
戴永年
关键词:  纳米材料  直流电弧等离子体  生长机理    
Abstract: Nanomaterials have been widely applied in many fields such as electronics, mechanical devices, drug delivery, catalysts and so forth, due to their unique optical, mechanical, magnetic, electrical, superconducting, and catalytic performances. The direct current (DC) arc plasma is an effective method for preparing nanomaterials with high purity. Specifically, high temperature can be generated by arc discharge between two electrodes, then the gas in the reaction chamber turn into plasma state, and the raw material is evaporated into gaseous atoms. The supersaturated vapor flows to the low temperature part of the reaction chamber, re-nucleates and grows into the desired nanoparticles. The preparation of nanomaterials by DC arc plasma show many advantages, including simple operation, low cost, high synthesis efficiency, high purity of the product, and environmental friendliness.
However, in the process of preparing nanomaterials by the arc discharge, changing the relevant experimental parameters will affects the particle size and morphology of the products. Especially, in the preparation of carbon nanomaterials, carbon nanomaterials with diverse morphology, like carbon nanotubes, graphene, and carbon nanohorns can be acquired by varying the experimental conditions. Therefore, it is necessary to find out the optimum synthesis conditions of different nanomaterials from the growth mechanism of nanocrystalline particles and to realize their controllable preparation. Nowadays, the research focus of preparing nanomaterials by arc process has turned from simple preparation methods study into the investigation of the formation mechanism and controllable synthesis parameters, for the sake of realizing the large scale preparation of nanomaterials with controllable particle size and uniform size distribution. In addition, since the arc process is superior to other methods, it is also popular for developing novel nanomaterials by employing arc process.
In recent years, fruitful results have been made in the preparation of nanomaterials by the arc discharge. In the field of carbon nanomaterials, not only the preparation of fullerenes and carbon nanotubes, but also the synthesis of high quality monolayer graphene and carbon nanohorns have been realized successfully. In terms of metal nanomaterials, high quality silver and nickel nanopowders have been obtained. In addition, nanomaterials of refractory metals are difficult to prepare by other methods because of their high melting point. While the temperature of arc zone can reach 104 K, hence the nanomaterials of various refractory metals such as mo, Cr, V, and W can be achieved by this method. Considering the ceramic nanomaterials, high performance ceramic nanomaterials like SiC and TiC have been successfully prepared. Besides, the formation and growth mechanism of nanoparticles should be explored deeply in order to realized the controllable preparation of nanomaterials by arc discharge. Recently, researchers use numerical simulations and other auxiliary methods to simulate the arc process, and temperature, pressure, and velocity distribution of the arc zone can be obtained. The simulated experimental results play a crucial role in explaining the growth mechanism of nanomaterials.
This review introduces the research progress of preparing carbon, metallic, and ceramic nanomaterials by the DC arc plasma. The formation mechanism of nanoparticles is analyzed in depth. The problems existing in the preparation of nanomaterials by arc plasma method are described, and corresponding solutions are put forward. Finally, the prospect of large scale, low cost, controllable preparation of nanomaterials by the DC arc discharge is illustrated.
Key words:  nanomaterials    DC arc discharge    growth mechanism
               出版日期:  2019-04-10      发布日期:  2019-04-10
ZTFLH:  TB321  
  TB31  
  O539  
基金资助: 国家自然科学基金(51704136;11765010);云南省应用基础研究面上项目(2016FB087);云南省院士自由探索基金(2017HA006)
通讯作者:  liangfeng@kmust.edu.cn   
作者简介:  叶凯,现为昆明理工大学冶金工程专业研究生,在梁风副教授的指导下进行研究。目前的研究领域为电弧等离子体制备纳米材料。梁风,副教授、硕士生导师,2014年3月博士毕业于日本东京工业大学,第九批云南省“高端科技人才”入选者。主要从事高能量密度储能器件(金属-空气电池、金属-二氧化碳电池等),等离子体技术制备纳米材料(碳纳米角、石墨烯、金属材料等)及纳米材料在能源上的应用等方面的研究。
引用本文:    
叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 直流电弧等离子体法制备纳米材料的研究进展[J]. 材料导报, 2019, 33(7): 1089-1098.
YE Kai , LIANG Feng , YAO Yaochun , mA Wenhui, YANG Bin, DAI Yongnian. A Survey on Preparation of Nanomaterials by DC Arc Plasma. Materials Reports, 2019, 33(7): 1089-1098.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18030013  或          http://www.mater-rep.com/CN/Y2019/V33/I7/1089
1 Zhang H.ACS Nano,2015,9(10),9451.
2 Kelly K L,Coronado E,Zhao L L,et al. Cheminform,2003,34(16),668.
3 martin C R. Science,1994,266(5193),1961.
4 Adamovich I,Baalru S D,Bogaerts A,et al. Journal of Physics D:Applied Physics,2017,50(32),323001.
5 Hou X H,Zhang m,Wang J Y,et al. Journal of Alloys and Compounds,2015,639,27.
6 Alvarado J A,maldonado A,Juarez H,et al. Beilstein Journal of Nanotechnology,2015,6(1),971.
7 Zurutuza A,marinelli C. Nature Nanotechnology,2014,9(10),730.
8 Lin T N,Chih K H,Yuan C T,et al. Nanoscale,2015,7(6),2708.
9 Xue Y Z,Wu B ,Bao Q L,et al. Small,2014,10 (15),2975.
10 Jin Y,Huang S,Zhang m,et al. Applied Surface Science,2013,268(3),541.
11 Carraro G,Gasparotto A,maccato C,et al. Chemical Vapor Deposition,2015,21,294.
12 Specht K,Zhang L,Fletcher C D,et al. Journal of Alloys and Compounds,2014,586(6),360.
13 Wei Z Q,Qiao H X,Yang H,et al. Journal of Alloys and Compounds,2009,479,855.
14 Wei D C,Liu Y Q. Advanced materials,2010,22(30),3225.
15 Jariwala D,Sangwan V K,Lauhon L J,et al.Chemical Society Reviews,2013,42(7),2824.
16 Su Y J,Zhang Y F.Carbon,2015,83,90.
17 Prasek J,Drbohlavova J,Chomoucka J,et al.Journal of materials Chemistry,2011,21(40),15872.
18 Song X L,Liu Y L,Zhu J W. materials Letters,2007,61(2),389.
19 Liang F,Shimizu T,Tanaka m,et al.Diamond and Related materials,2012,30,70.
20 Hutchison J L,Kiselev N A,Krinichnaya E P,et al.Carbon,2001,39(5),761.
21 Takizawa m,Bandow S,Yudasaka S,et al. Chemical Physics Letters,2000,326(3),351.
22 Subrahmanyam K S,Panchakarla L S,Govindara A,et al. Journal of Physical Chemistry C,2009,113(11),4257.
23 Yamaguchi T,Bandow S,Iijima S.Chemical Physics Letters,2004,389,181.
24 maria K H,mieno T. Vacuum,2015,113,11.
25 Ando Y,Zhao X L,Sugai T,et al. Cheminform,2005,36(38),22.
26 Sari A H,Khazali A,Parhizgar S S.International Nano Letters,2018,8,19.
27 Zhu H W,Jiang B,Xu C L,et al. Journal of Physical Chemistry B,2003,107(27),6514.
28 Bonaccorso F,Colombo L,Yu G,et al. Science,215,347(6217),1246501.
29 Qin B,Zhang T F,Chen H H,et al. Carbon,2016,102,494.
30 Domun N,Hadavinia H,Zhang T,et al. Nanoscale,2015,7(23),10294.
31 Kostarelos K,Novoselov K S. Nature Nanotechnology,2014,9(10),744.
32 Poorali m S,mohagheghi m B. Journal of materials Science materials in Electronics,2017,28,6186.
33 Raccichini R,Varzi A,Passerini S,et al. Nature materials,2015,14(3),271.
34 Lee S,Hong J Y,Jang J. ACS Nano,2013,7(7),5784.
35 Kim S J,Song Y J,Wright J,et al.Carbon,2016,102,339.
36 Luo Z Q,Lim S,Tian Z Q,et al. Journal of materials Chemistry,2011,21(22),8038.
37 Shao Y Y,Sui J H,Yin G P,et al. Applied Catalysis B: Environmental,2008,79(1),89.
38 Guan L,Cui L,Lin K,et al. Applied Physics A,2011,102(2),289.
39 Kumar L,Singh R K,Dubey P K,et al. Journal of Nanoparticle Research,2013,15,1847.
40 Zhang D,Dai Y N,Liang F.materials Review A:Review Papers,2017,31(5),64 (in Chinese).
张达,戴永年,梁风. 材料导报:综述篇,2017,31(5),64.
41 Levchenko I. Nanoscale,2016,8(20),10511.
42 Iijima S,Yudasaka m,Yamada R,et al. Chemical Physics Letters,1999,306,165.
43 Karousis N,Suarezmartinez I,Ewels C P,et al. Chemical Reviews,2018,116(8),48.
44 Wang X,Lou m H,Yuan X T,et al.Carbon,2017,118,511.
45 Nan Y L,Li B,Zhang P,et al.materials Letters,2016,180,313.
46 Sun L,Wang C L,Zhou Y,et al. Applied Surface Science,2013,277(8),88.
47 Su Y,Zhang J,Zhang L,et al. Journal of Nanoscience and Nanotechnology,2013,13(2),1078.
48 Petkov V,Bedford N,Knecht m R,et al. Journal of Physical Chemistry C,2008,112(24),8907.
49 Dong X L,Zhang Z D,Xiao Q F,et al. Journal of materials Science,1998,33(7),1915.
50 Lee G G,Kim W Y. metals and materials International,2005,11(2),177.
51 Wei Z Q,Xia T W,Bai L F,et al.materials Letters,2006,60(6),766.
52 Liang F,Tanaka m,Choi S,et al. Journal of Physics D: Applied Physics,2016,49(12),125201.
53 Yang Z Q,You C Y,He L L. Journal of Alloys and Compounds,2006,423,128.
54 Tanaka m,Watanabe T.Thin Solid Films,2008,516(19),6645.
55 Lei J P,Dong X L,Zhu X G,et al. Intermetallics,2007,15(12),1589.
56 Saleh N B,Chambers B,Aich N,et al. Frontiers in microbiology,2015,6,677.
57 Wei Y F,Fang Z Q,Zheng L C,et al. materials Letters,2016,185,384.
58 Zhang H Q,Zou G S,Liu L,et al.Journal of materials Science,2017,52(6),3375.
59 Liu Y F,Zhu K L,Li X L,et al.Advanced Powder Technology,2018,29,863.
60 Liang F,Tanaka m,Choi S,et al. Carbon,2017,17,100.
61 Pedrazzini S,Galano m,Audebert F,et al. materials Science and Engineering A,2016,672,175.
62 Lombardi m,Cacciotti I,Bianco A,et al. Ceramics International,2015,41(3),3371.
63 Shen L H. Applied Physics A: materials Science and Processing,2006,84,73.
64 Lei W W,Liu D,Zhu P W,et al. CrystEngComm,2010,12(2),511.
65 Wong E W,Sheehan P E,Liebert C m.Science,1997,277(5334),1971.
66 Chiu S C,Huang C W,Li Y Y. Journal of Physical Chemistry C,2007,111(28),10294.
67 Gao J,Zhou L,Liang J S,et al.Nano Research,2018,11(3),1470.
68 Kiran V,Srinivasu K,Sampath S.Physical Chemistry Chemical Physics,2013,15(22),8744.
69 Yu J Y,Yu H T,Gao J,et al.Journal of Alloys and Compounds,2017,693,500.
70 Ziashahabia A,Poursalehia R,Naserib N.materials Science in Semiconductor Processing,2017,72,128.
71 Huang J,Yin Z G,Zheng Q D. Energy and Environmental Science,2011,4(10),3861.
72 Ashkarrana A A,Zad A I,mahdavi S m,et al. materials Chemistry and Physics,2009,118(1),6.
73 Yao K F,Peng Z,Fan X.Journal of Environmental Sciences,2009,21(6),727.
74 Darzi S J,mahjoub A R,Bayat A.International Journal of Nano Dimension,2015,45(3),1254.
75 Fang F,Kennedy J,manikandan E,et al. Chemical Physics Letters,2012,521(1),86.
[1] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[2] 张燕. 一步法制备无表面修饰剂花状金纳米颗粒及其表面增强拉曼散射性能研究[J]. 材料导报, 2019, 33(z1): 314-317.
[3] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[4] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[5] 杨焜, 王春来, 丁晟, 刘长军, 田丰, 李钒. 荧光碳量子点:合成、特性及在肿瘤治疗中的应用[J]. 材料导报, 2019, 33(9): 1475-1482.
[6] 阮子林, 郝振亮, 张辉, 卢建臣, 蔡金明. Cu2-xS(0≤x≤1)化合物:制备技术、物理特性及应用[J]. 材料导报, 2019, 33(7): 1141-1155.
[7] 陈娟, 江琦. 自组装技术在特殊形貌无机纳米材料制备中的作用[J]. 材料导报, 2019, 33(3): 454-461.
[8] 安文,马建中,徐群娜. 功能型酪素基复合材料的研究进展[J]. 材料导报, 2019, 33(15): 2602-2609.
[9] 张腾, 唐天宇, 侯仰龙. 面向锂硫电池的高负载量碳硫复合正极材料研究进展[J]. 材料导报, 2019, 33(1): 90-102.
[10] 罗妍钰,李才亮,陈国华. 螺旋碳纤维的制备:形貌控制与生长机理[J]. 《材料导报》期刊社, 2018, 32(9): 1442-1451.
[11] 刘云子,张伟,宋占永. 金属纳米颗粒导电墨水制备与后处理工艺的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 391-397.
[12] 管庆顺,李建,宋如愿,徐朝阳,吴伟兵,景宜,戴红旗,房桂干. 基于纳米材料的气凝胶制备及应用[J]. 《材料导报》期刊社, 2018, 32(3): 384-390.
[13] 宋晔, 缪远玲, 孟月东, 王奇. 利用等离子体技术制备和改性碳基纳米材料的研究进展[J]. 材料导报, 2018, 32(19): 3295-3303.
[14] 丁昂, 张钟元, 程厅, 董星龙. 中空硅纳米球锂离子电池负极材料的制备及电化学性能[J]. 《材料导报》期刊社, 2018, 32(11): 1791-1794.
[15] 董奇志, 万汉生, 曾文霞, 余淑敏, 郭灿城, 余刚. 改性碳纳米材料在低温燃料电池中的应用*[J]. CLDB, 2017, 31(9): 81-89.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed