Please wait a minute...
材料导报  2019, Vol. 33 Issue (5): 812-818    https://doi.org/10.11896/cldb.201905013
  无机非金属及其复合材料 |
电荷辅助氢键的形成机制及环境效应研究进展
王朋1,2, 肖迪1,2, 梁妮1,2, 周日宇3, 张迪1,2
1 昆明理工大学环境科学与工程学院,昆明 650500;
2 云南省土壤固碳与污染控制重点实验室,昆明 650500;
3 西南科技大学环境与资源学院,绵阳 621010
Advances in Formation Mechanism and Environmental Effects of Charge-assistedHydrogen Bonds
WANG Peng1,2, XIAO Di1,2, LIANG Ni1,2, ZHOU Riyu3, ZHANG Di1,2
1 Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming 650500;
2 Yunnan Key Laboratory of Carbon Sequestration and Pollution Control, Kunming 650500;
3 School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010
下载:  全 文 ( PDF ) ( 1659KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氢键(Hydrogen bond)作为分子间一种常见的相互作用力,在物理、化学和生物过程中起着重要作用,这种所谓的“弱相互作用”已经被广泛研究。因独特的键合方向性和成键特异性,该键合作用能够在分子聚集过程中提供最佳的控制,被应用于晶体材料合成工艺领域。尤其是离子或电荷辅助下形成的氢键,即电荷辅助氢键(Charge-assisted hydrogen bond,CAHB),其键合强度相当于共价键,引起了研究者的关注。
CAHB是指相对于普通的氢键作用,形成氢键作用的两个物质之间存在电荷分布,能够直接形成CAHB。实际上,在给定的共振结构中,电荷的分布是间接导致相对较强的CAHB形成的主要原因。此外,两性离子组分与携带相反电荷的载体之间伴随着库仑相互作用,由于存在两个能量等价的价键共振形式,进而形成具有更强结合作用的CAHB。其中,与质子供体原子上正电荷之间形成(+)CAHB,与质子接受基团上的负电荷之间形成(-)CAHB。
研究发现CAHB作为一类低阻氢键,或类似于阳离子桥的盐桥,普遍存在于环境过程中。其键强比普通的氢键强得多,具有与共价键相当的特性,该特性有助于环境中许多介质自组装过程的发生。CAHB作用下形成的超级大分子结构就是天然有机质在环境中的主要存在形式。吸附是常用于去除水环境中可解离的两性有机污染物的技术手段。研究发现,碳基吸附剂和离子型化合物之间的静电相互作用可能是去除诸多离子型化合物的主要吸附机制。然而,一些其他研究已经注意到,单独的静电相互作用不能解释pH值对发生解离后的离子型污染物吸附的影响,这表明存在额外的物理或化学相互作用机制需要进一步研究。CAHB作为负电荷吸附质和吸附剂之间强的作用力,能较好地解释吸附实验中出现的一些异常现象。
本文综述了CAHB在环境中的成键机理以及产生的环境效应。结合部分实验数据,着重论述了CAHB作为天然有机质(包括腐殖质和溶解性有机质)共轭形成超级大分子的重要作用机理。最后,对CAHB参与的复杂水质条件下的环境行为及其受天然有机质的影响,以及碳基吸附剂去除离子型有机污染物的选择和制备方面的研究提出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王朋
肖迪
梁妮
周日宇
张迪
关键词:  电荷辅助氢键  天然有机质  超大分子  离子型化合物  吸附    
Abstract: As a common intermolecular interaction force, hydrogen bonds play a significant role in physical, chemical and biological processes. And this so-called “weak interaction” has long been studied extensively. Thanks to its unique orientation and specificity of bonding, hydrogen bonding effect can regulate molecular aggregation perfectly, which has been widely applied in synthesis of crystal materials. Especially, the hydrogen bonds formed with the assist of ion or charge, namely the charge-assisted hydrogen bonds (CAHB), exhibit a binding strength stronger than ordinary hydrogen bond, and equivalent to covalent bond, which has aroused numerous interests of researchers.
Different from ordinary hydrogen bonds, there is a charge distribution between the two substances that form the CAHB. Actually, just the distribution of charge in a given resonance structure dominant the formation of the relatively strong CAHB. In addition, there is also Coulomb interaction between the amphoteric ion component and the carrier carrying the opposite charge. The existence of two energy-equivalent valence bond resonance forms result in the stronger binding CAHB. Specifically, (+)CAHB is formed between the positive charge on the proton donor atom; and (-)CAHB is formed between the formal negative charge on the proton accepting group.
It has been also found that CAHB, as a kind of low-resistance hydrogen bond or a salt bridge similar to a cation bridge, is ubiquitous in environmental processes. They possess not only bonding strength much stronger than ordinary hydrogen bonds, but also characteristics similar to covalent bonds, which is beneficial to the self-assembly process of many environmental media. The super macromolecular structure formed by CAHB is the main form of natural organic matter (NOM) in the environment. Adsorption is commonly used to remove the dissociable amphoteric organic pollutants in water environments. The electrostatic interaction between carbon-based adsorbents and ionic compounds may be the main adsorption mechanism for the removal of these ionic compounds. However, a number of other studies have noted that individual electrostatic interaction alone is not able to explain the effect of pH on the adsorption of dissociated ionic contaminants. Apparently, there exists additional physical or chemical interaction mechanisms that need to be further investigated. While CAHB can be well used to explain some abnormal phenomena in adsorption experiments, such as the strong interaction between the negatively charged adsorbates and the adsorbents.
In this article, the key formation mechanism of CAHB in the environment and their environmental effects are summarized. Combining with some experimental data, the important mechanism of natural organic matter (including humic substances and dissolved organic matter) conjugating and forming supramolecules via CAHB is discussed with emphasis. Finally, the environment behavior of ionic compounds affected by natural organic matter under the complex water quality conditions with the participation of CAHB is mentioned. The selection and preparation of carbon-based adsorbents for the removal of ionic compounds are also suggested.
Key words:  charge-assisted hydrogen bonds    natural organic matter    super macromolecules    ionic compounds    adsorption
               出版日期:  2019-03-10      发布日期:  2019-03-12
ZTFLH:  X50  
基金资助: 国家自然科学基金(41663014;41303093);云南省中青年学术和技术带头人后备人才项目(2018HB008);国家建设高水平大学公派研究生项目(201708530253)
作者简介:  王朋,2013年6月毕业于昆明理工大学,获得工学硕士学位。目前主要研究领域为碳纳米材料和有机污染物环境行为。张迪,博士,美国University of Massachusetts Amherst博士后,副教授,博士生导师,云南省中青年学术和技术带头人后备人才,2016年云南省自然科学奖二等奖获得者,伍达观教育基金杰出教师奖获得者,享受云南省高层次人才住房和工作经费。其中,2015年破格晋升副教授,2017年破格晋升博士研究生导师。他的研究领域主要包括:Ⅰ.纳米材料的环境行为和风险;Ⅱ.工程纳米材料的环境应用;Ⅲ.真菌的分类和多样性。主持国家基金2项,省部级项目2项。zhangdi2002113@sina.com
引用本文:    
王朋, 肖迪, 梁妮, 周日宇, 张迪. 电荷辅助氢键的形成机制及环境效应研究进展[J]. 材料导报, 2019, 33(5): 812-818.
WANG Peng, XIAO Di, LIANG Ni, ZHOU Riyu, ZHANG Di. Advances in Formation Mechanism and Environmental Effects of Charge-assistedHydrogen Bonds. Materials Reports, 2019, 33(5): 812-818.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201905013  或          http://www.mater-rep.com/CN/Y2019/V33/I5/812
1 Mahmudov K T, Pombeiro A J. Chemistry-A European Journal,2016,22,16356.
2 Braga D, Grepioni F. Accounts of Chemical Research,2000,33,601.
3 Gilli P, Bertolasi V, Ferretti V, et al. Journal of the American Chemical Society,1994,116,909.
4 Gilli G,Gilli P. The nature of the hydrogen bond, Oxford University Press, UK,2009.
5 Son S U, Reingold J A, Carpenter G B, et al. Organometallics,2006,25,5276.
6 Piccolo A. Advances in agronomy, Elsevier, US,2002.
7 Piccolo A. Humic substances in terrestrial ecosystems, Elsevier, Netherlands,1996.
8 Xie M, Chen W, Xu Z, et al. Environmental Pollution,2014,186,187.
9 Gilli G, Gilli P. Journal of Molecular Structure,2000,552,1.
10 Xiao F, Pignatello J J. Environmental Science & Technology,2016,50,6276.
11 Lehn J M. Supramolecular chemistry, Vch, Weinheim, GER,1995.
12 Adachi K, Sugiyama Y, Yoneda K, et al. Chemistry-A European Journal,2005,11,6616.
13 Prins L J, Reinhoudt D N, Timmerman P. Angewandte Chemie International Edition,2001,40,2382.
14 Arunan E, Desiraju G R, Klein R A, et al. Pure and Applied Chemistry,2011,83,1637.
15 Desiraju G R, Steiner T. International Union of Crystal, Oxford University Press, UK,2001.
16 Sobczyk L, Grabowski S J, Krygowski T M. Chemical Reviews,2005,105,3513.
17 Adams H, Carver F J, Hunter C A, et al. Angewandte Chemie International Edition,1996,35,1542.
18 Corbin P S, Zimmerman S C. Journal of the American Chemical Society,2000,122,3779.
19 Gilli G, Bellucci F, Ferretti V, et al. Journal of the American Chemical Society,1989,111,1023.
20 Gilli P, Bertolasi V, Ferretti V, et al. Journal of the American Chemical Society,1994,116,909.
21 Bankiewicz B, Palusiak M. Computational and Theoretical Chemistry,2011,966,113.
22 Ward M D. Chemical Communications, DOI: 10.1039/b513077h.
23 Schmuck C. Chemical Communications, DOI: 10.1039/A901126I.
24 Braga D, Polito M, Bracaccini M, et al. Organometallics,2003,22,2142.
25 Kononova M M. Soil organic matter: Its nature, its role in soil formation and in soil fertility, Pergamon Press, US,1966.
26 Stevenson F J. Humus chemistry: Genesis, composition, reactions,Wiley, US,1994.
27 Dubach P, Mehta N C. Soils Fertil,1963,26,293.
28 Conte P,Piccolo A. Environmental Science & Technology,1999,33,1682.
29 Piccolo A, Nardi S, Concheri G. European Journal of Soil Science,1996,47,319.
30 Piccolo A, Nardi S, Concheri G. Chemosphere,1996,33,595.
31 Piccolo A, Conte P, Cozzolino A. European Journal of Soil Science,1999,50,687.
32 Cozzolino A, Piccolo A. Soil Biology & Biochemistry,2002,33,563.
33 Zhao J, Chu G, Pan B, et al. Environmental Science & Technology,2018,52,5173.
34 Li X, Pignatello J J, Wang Y, et al. Environmental Science & Technology,2013,47,8334.
35 Franz M, Arafat H A, Pinto N G. Carbon,2000,38,1807.
36 Lian F, Sun B, Song Z, et al. Chemical Engineering Journal,2014,248,128.
37 Moreno-Castilla C. Carbon,2004,42,83.
38 Gilli P, Pretto L, Bertolasi V, et al. Accounts of Chemical Research,2008,42,33.
39 Teixidó M, Pignatello J J, Beltrán J L, et al. Environmental Science & Technology,2011,45,10020.
40 Lee J W, Kidder M, Evans B R, et al. Environmental Science & Techno-logy,2010,44,7970.
41 Silber A, Levkovitch I, Graber E. Environmental Science & Technology,2010,44,9318.
42 Fang Q, Chen B, Lin Y, et al. Environmental Science & Technology,2013,48,279.
43 Li H, Cao Y, Zhang D, et al. Science of the Total Environment,2018,618,269.
[1] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[2] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[3] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[4] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[5] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[6] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[7] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[8] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[9] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[10] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[11] 戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
[12] 刘德坤, 刘航, 杨柳, 罗永明, 韩彩芸. 镧、铈改性介孔氧化铝对氟离子的吸附[J]. 材料导报, 2019, 33(4): 590-594.
[13] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[14] 王龙江, 李永国, 俞杰, 樊惠玲, 吴波, 韩丽红, 李彦樟, 乔太飞. 三维有序大孔铜基吸附剂的制备及除碘性能[J]. 材料导报, 2019, 33(4): 660-664.
[15] 孙增智, 薛程, 宋莉芳, 邱树君, 褚海亮, 夏永鹏, 孙立贤. 金属有机骨架化合物的二氧化碳吸附性能的研究进展[J]. 材料导报, 2019, 33(3): 541-549.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed