Please wait a minute...
材料导报  2019, Vol. 33 Issue (2): 246-250    https://doi.org/10.11896/cldb.201902009
  无机非金属及其复合材料 |
微胶囊在修补砂浆中延迟释放早强剂的应用及性能分析
杨刘琨, 潘志华, 徐赛赛, 刘劲松
南京工业大学材料科学与工程学院,南京 210009
Microcapsules for Realizing Delayed Release of Early Strength Agent in Repair
Mortar and Their Property Analysis
YANG Liukun, PAN Zhihua, XU Saisai, LIU Jingsong
College of Materials Science and Engineering,Nanjing Tech University,Nanjing 210009
下载:  全 文 ( PDF ) ( 3951KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为使修补砂浆具备合适的凝结时间和较高的早期强度,将无水硫酸钠经微胶囊包覆后掺入到修补砂浆中,进而研究微胶囊对修补砂浆凝结时间、抗压强度、水化进程、水化产物以及水化早期钙矾石生长速率的影响。结果表明,微胶囊的掺入显著延长了浆体的凝结时间,缩短了其初凝、终凝的时间间隔,且对砂浆的早期强度无明显影响;使浆体的水化速度在开始的3 h内处于一个较低的水平,随后其水化速度增大,并最终与掺等量无水硫酸钠浆体的水化程度达到相当水平。另外,掺微胶囊的浆体早期钙矾石的生长速率处在一个较高的水平,且水化4 h后能达到与掺等量无水硫酸钠体水化产物相当的致密度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨刘琨
潘志华
徐赛赛
刘劲松
关键词:  微胶囊  修补砂浆  水化进程  水化产物  钙矾石    
Abstract: Aiming at preparing a kind of repair mortar with proper setting time and higher early strength, anhydrous sodium sulfate was microencapsulated and incorporated into the repair mortar. Then the effects of the microcapsules on setting time, compressive strength, development of hydration process, hydration product and the growth rate of ettringite in early hydration of the repair mortar were investigated in depth. The results showed that the setting process of paste was substantially prolonged, the interval of initial and final setting time was shortened, while no obviously variation of compressive strength was found after the anhydrous sodium sulfate microcapsules were incorporated in the repair mortar. Thanks to the addition of the microcapsules, the hydration rate of the paste maintained at a low level in the first 3 h of hydration, then the hydration rate increased obviously, and finally the paste reached the similar hydration degree with the repair mortar adding the same amount of anhydrous sodium sulfate. Besides, the repair mortar with microcapsules exhibited a high growth rate of ettringite in early hydration, and its hydration product could obtain a similar densification with that of the repair mortar adding the same amount of anhydrous sodium sulfate after hydration for 4 h.
Key words:  microcapsule    repair mortar    hydration process    hydration products    ettringite
                    发布日期:  2019-01-31
ZTFLH:  TQ172.72  
基金资助: 江苏高校优势学科建设工程资助项目(PAPD)
作者简介:  杨刘琨,2018年6月毕业于南京工业大学,获得工程硕士学位,主要从事无机非金属材料的研究。潘志华,教授,长期从事新型胶凝材料、生态环境材料、水泥混凝土化学、水泥生产工艺技术、特殊混凝土制备和应用技术的研究。panzhihua@njtech.edu.cn
引用本文:    
杨刘琨, 潘志华, 徐赛赛, 刘劲松. 微胶囊在修补砂浆中延迟释放早强剂的应用及性能分析[J]. 材料导报, 2019, 33(2): 246-250.
YANG Liukun, PAN Zhihua, XU Saisai, LIU Jingsong. Microcapsules for Realizing Delayed Release of Early Strength Agent in Repair
Mortar and Their Property Analysis. Materials Reports, 2019, 33(2): 246-250.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201902009  或          http://www.mater-rep.com/CN/Y2019/V33/I2/246
1 White S R, Sottos N R, Geubelle P H, et al. Nature,2001,409(6822),794.
2 Šavija Branko, Zhang Hongzhi, Schlangen Erik. Materials,2017,10,863.
3 Perez G, Gaitero J J, Erkizia E, et al. Cement and Concrete Composites,2015,60,55.
4 Giannaros P, Kanellopoulos A, Al-Tabbaa A. Smart Materials and Structures,2016,25(8),084005.
5 Choi Y C, Cho Y K, Shin K J, et al. KSCE Journal of Civil Enginee-ring,2016,20(1),282.
6 Dong B, Wang Y, Ding W, et al. Construction and Building Materials,2014,56(3),1.
7 Wang Y, Fang G, Ding W, et al. Scientific Reports,2015,5,18484.
8 Dong B, Wang Y, Fang G, et al. Cement and Concrete Composites,2015,56,46.
9 Wang Y, Ding W, Fang G, et al. Construction and Building Materials,2016,125,742.
10 He Yan, Zhang Xiong, Zhang Yongjuan, et al. Journal of Building Materials,2015,18(3),433(in Chinese).
何燕,张雄,张永娟,等.建筑材料学报,2015,18(3),433.
11 Hu Ting, Yao Xiao, Zhu Huajun. Polymer Materials Science and Engineering,2012,28(8),148(in Chinese).
胡婷,姚晓,诸华军.高分子材料科学与工程,2012,28(8),148.
12 Jambor J. Cement and Concrete Research,1990,20(6),948.
13 Wang Peiming, Feng Shuxia, Liu Xianping. Journal of Building Mate-rials,2005,8(6),646(in Chinese).
王培铭,丰曙霞,刘贤萍.建筑材料学报,2005,8(6),646.
14 Shen Wei. Cement Technology, Wuhan University of Technology Press, China,1991(in Chinese).
沈威.水泥工艺学,武汉理工大学出版社,1991.
15 Yang Jiujun, Guan Zongfu, Yu Haiyan, et al. Journal of the Chinese Ceramic Society,1997(4),470(in Chinese).
杨久俊,管宗甫,余海燕,等.硅酸盐学报,1997(4),470.
16 Yan Lili, Zhou Wen, You Qian, et al. New Building Materials,2015,42(2),41(in Chinese).
颜哩哩,周文,尤迁,等.新型建筑材料,2015,42(2),41.
[1] 李宏英, 王鸿博, 傅佳佳, 王文聪. 薄荷油微胶囊整理对涤纶织物服用性能的影响[J]. 材料导报, 2019, 33(z1): 510-514.
[2] 陈庆, 王慧, 蒋正武, 朱合华, 马瑞. 基于中心粒子模型的超高性能水泥基材料水化进程模拟[J]. 材料导报, 2019, 33(8): 1312-1316.
[3] 王卫彪, 莫立武, 邓敏. CaSO4·2H2O-C3A压实体水化产生膨胀应力的机理[J]. 材料导报, 2019, 33(8): 1307-1311.
[4] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[5] 都蓉蓉, 张雄, 顾明东, 季涛. 聚羧酸减水剂与增强组分的复合效应及原理[J]. 材料导报, 2019, 33(14): 2461-2466.
[6] 杨凯, 张之璐, 杨永, 韩昊, 黄文聪, 朱效宏, 唐德莎, 李爽, 杨长辉. 复合激发剂对碱矿渣胶结材水化进程及早期性能的影响[J]. 材料导报, 2019, 33(14): 2326-2330.
[7] 余鑫, 于诚, 冉千平, 刘加平. 基于Rietveld外标法的水泥及其水化产物定量分析[J]. 材料导报, 2019, 33(14): 2337-2342.
[8] 苏英, 邱慧琼, 贺行洋, 杨进, 王迎斌, 曾三海, Bohumír Strnadel. 弱碱激发超细粉煤灰水化产物结构分析[J]. 材料导报, 2019, 33(14): 2376-2380.
[9] 周淑千, 徐卫兵, 周然, 周正发, 马海红, 任凤梅. P(AN-co-MA-co-MMA)@H2O微胶囊/密胺高阻燃泡沫的制备及性能[J]. 材料导报, 2019, 33(12): 2095-2099.
[10] 龚圣, 沈之川, 周新华, 陈铧耀, 徐华. 毒死蜱/脲醛树脂微胶囊的制备工艺优化及缓释动力学[J]. 《材料导报》期刊社, 2018, 32(8): 1241-1246.
[11] 张晓佳, 张高展, 孙道胜, 刘开伟. 水泥基材料硫酸盐侵蚀机理的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1174-1180.
[12] 何旸, 钱文勋, 张燕迟, 蔡跃波, 王新. 高速水流下空蚀热效应对水泥水化产物的破坏[J]. 材料导报, 2018, 32(24): 4281-4285.
[13] 毛倩瑾, 伍文文, 梁鹏, 王子明, 崔素萍. 海藻酸钙/环氧微胶囊在水泥基材料中的自修复作用[J]. 材料导报, 2018, 32(22): 4016-4021.
[14] 李振国, 刘博, 吴运强, 王博, 郭江涛, 余四文. 碱式硫酸镁水泥耐酸腐蚀性能研究[J]. 材料导报, 2018, 32(16): 2733-2737.
[15] 张仲达, 杨文芳. 层层自组装技术的研究进展及应用情况*[J]. 《材料导报》期刊社, 2017, 31(5): 40-45.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed