Please wait a minute...
材料导报  2018, Vol. 32 Issue (15): 2513-2537    https://doi.org/10.11896/j.issn.1005-023X.2018.15.001
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
二维材料MXene的储能性能与应用
郑伟1, 杨莉1, 张培根1, 陈坚1, 田无边1, 张亚梅2, 孙正明1
1 东南大学材料科学与工程学院,江苏省先进金属材料高技术研究重点实验室,南京 211189;
2 东南大学材料科学与工程学院,江苏省土木工程材料重点实验室,南京 211189
Energy Storage and Application for 2D Nano-material MXenes
ZHENG Wei1, YANG Li1, ZHANG Peigen1, CHEN Jian1, TIAN Wubian1, ZHANG Yamei2, SUN Zhengming1
1 Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, SoutheastUniversity, Nanjing 211189;
2 Jiangsu Key Laboratory of Construction Materials, School of MaterialsScience and Engineering, Southeast University, Nanjing 211189
下载:  全 文 ( PDF ) ( 2199KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 能量存储和转化器件是现代社会的重要基础。随着清洁能源、便携式电子设备及电动汽车的快速发展,人们对储能器件性能的要求越来越高。储能材料是决定储能器件性能的重要因素。通常,储能材料需满足具有可逆的氧化还原反应、易于电解液离子脱嵌、尽可能多地提供氧化还原位点、良好的导电能力等要求。
近年来,二维材料因比表面积大、离子传输路径短等特点而得到广泛关注,在储能领域也具有巨大的发展潜力。只有原子量级厚度的二维材料,表面活性位点多,力学性能优良,正契合储能器件对电极材料的要求。MXene是一类新型二维材料,通式为Mn+1XnTx,其中M代表过渡族金属元素,X为碳和/或氮,T代表MXene在制备过程中产生的官能团(-F、-OH、-O等),n一般为1~4。自2011年首次报道以来,MXene在储能领域就被寄予厚望。MXene含有碳原子层,所以具有类似石墨烯的良好导电性;而过渡金属层使其表现出类似过渡金属氧化物的性能;同时,表面多样的官能团赋予MXene良好的亲水性。这种独特的性能组合,使得MXene电荷响应速度快,具有赝电容特征且循环性能稳定,成为储能领域的研究焦点。另外,便携式储能器件要求更高的体积容量与体积能量密度,而MXene与碳基电极材料相比堆积密度高,可有效降低器件体积,拓展应用范围。
目前,MXene及其复合材料已经在超级电容器、锂/钠/镁离子二次电池、锂硫电池、锌-空气电池、储氢等诸多储能领域展现出实用价值。但是,MXene容易发生塌陷和堆垛,影响其作为电极材料的性能。因此,需将MXene进行插层、改性、掺杂或与其他材料复合,以阻止MXene堆叠,减小离子扩散阻力,并增加离子吸附位点,从而提高其电化学性能。而且,不同的能量存储和转化装置对MXene的合成方法和结构特征有不同的要求,鉴于MXene能源应用相关研究的大量呈现,有必要对其进行全面总结与分析,以期推动MXene在该领域的发展。
本文旨在综述MXene在制备、结构、性能及其在储能方面的最新研究动态与发展方向,并讨论面临的挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑伟
杨莉
张培根
陈坚
田无边
张亚梅
孙正明
关键词:  MAX相  MXene  二维材料  制备  储能    
Abstract: Energy storage and conversion devices are one of the indispensable bases for the modern society. The demands for high performance energy storage and conversion devices are becoming more and more urgent with the rapid development of portable electronic devices and electric vehicles. The performance of energy storage and conversion devices strongly depends on the development and utilization of energy storage materials. Generally, the requirements for energy storage materials are as follows: being capable of reversible redox reactions; having excellent ionic accessibility; providing plenty of redox active sites; having high electronic conductivity.
Recently, two dimensional materials have shown great advantages in energy storage area for their large surface area and short ion transmission path. Two dimensional materials, possessing only atomic layer thickness and large number of surface active sites, good mechanical properties, exactly fit the role of energy storage and conversion devices. MXenes are a new type of two-dimensional materials, generally represented as Mn+1XnTx, where M is the transition metal elements, X is carbon and/or nitrogen, T represents functional groups (-F,-OH,-O, etc.) produced in the MXenes preparation process, and n is usually 1—4. Since being discovered in 2011, they have been highly expected for energy-related technology applications. MXenes exhibit good conductivity, fast charge response, pseudocapacitance and stable cycle life. The carbon layers in MXenes lead to good conductivity; the transition metal (M) layers render MXenes similar properties of transition metal oxides; whereas the functional groups enable MXenes hydrophilic surface. Such unique structure and properties perfectly match the requirements for energy storage materials and thus drive the research on MXenes a hot topic. In addition, portable energy storage and conversion devices demand high volumetric capacity and volumetric energy density. Compared with carbon-based electrode materials, MXenes have high accumulation density, which can effectively reduce the volume of energy storage devices and thus widen its application spectrum.
MXenes and their composites have already shown practical application in supercapacitors, lithium/sodium/magnesium ion se-condary batteries, lithium-sulphur batteries, zinc-air batteries, hydrogen storage and other energy storages. However, pristine MXenes are prone to collapse and restack during preparation and service, compromising their performance as electrode material. Much work, such as intercalating, modification, doping, compositing with other materials, has been done to reduce the ion diffusion resistance and increase the ion adsorption sites, resulting in the prevention of MXene restacking and electrochemical properties improvement. Moreover, different energy storage and conversion devices have different requirements for the synthesis processes and structural features of MXenes. Given that the research papers on MXene-related energy materials exponentially expand, it is necessary to comprehensively summarize and analyze it in order to promote their development in the field of energy storage and conversion.
This article reviews the latest progress on the synthesis, structure, properties and energy storage applications of MXenes and also discusses the research directions and challenges for MXenes for the years to come.
Key words:  MAX phase    MXene    two dimensional materials    preparation    energy storage
               出版日期:  2018-08-10      发布日期:  2018-08-09
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51731004;51501038;51671054);东南大学优秀博士学位论文培育基金(3212008707)
通讯作者:  孙正明:通信作者,男,教授,博士研究生导师,研究方向为MAX/MXene材料的科学问题与工业应用、环境友好材料和器件的研究与开发 E-mail:zmsun@seu.edu.cn;张培根:通信作者,男,副教授,研究方向为晶须自发生长机理研究、MXene材料的科学问题研究与工业应用 E-mail:zhpeigen@seu.edu.cn   
作者简介:  郑伟:男,1987年生,博士研究生,研究方向为MAX相和MXene的性质及应用 E-mail:zhengwei_huagong@126.com
引用本文:    
郑伟, 杨莉, 张培根, 陈坚, 田无边, 张亚梅, 孙正明. 二维材料MXene的储能性能与应用[J]. 材料导报, 2018, 32(15): 2513-2537.
ZHENG Wei, YANG Li, ZHANG Peigen, CHEN Jian, TIAN Wubian, ZHANG Yamei, SUN Zhengming. Energy Storage and Application for 2D Nano-material MXenes. Materials Reports, 2018, 32(15): 2513-2537.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.15.001  或          http://www.mater-rep.com/CN/Y2018/V32/I15/2513
20180830092904  
20180830092909  
1 Conway B E. Electrochemical supercapacitors: Scientific fundamentals and technological applications[J].Springer Science & Business Media,2013,7:21.
2 Tang J, Hua Q S, Yuan J S, et al. Two dimentional materials for supercapacitor[J].Materials Review A: Review Papers,2017,31(5):26(in Chinese).
唐捷,华青松,元金石,等.超级电容器中的二维材料[J].材料导报:综述篇,2017,31(5):26.
3 Beguin F, Frackowiak E. Supercapacitors-materials systems and applications[M].German: Wiley-VCH,2013.
4 Zhang W, Eperon G E, Snaith H J. Metal halide perovskites for energy applications[J].Nature Energy,2016,1(6):16048.
5 Novoselov K S, Fal’ko V I, Colombo L, et al. A roadmap for graphene[J].Nature,2012,490(7419):192.
6 Chen J, Xu H. Research progress of graphene and its nanocompo-sites as anodes for lithium ion battery[J].Materials Review A: Review Papers,2017,31(5):36(in Chinese).
陈坚,徐晖.石墨烯及其纳米复合材料作为锂离子电池负极的研究进展[J].材料导报:综述篇,2017,31(5):36.
7 Yang X, Cheng C, Wang Y, et al. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage[J].Science,2013,341(6145):534.
8 Nicolosi V, Chhowalla M, Kanatzidis M G, et al. Liquid exfoliation of layered materials[J].Science,2013,340(6139):1420.
9 Allen M J, Tung V C, Kaner R B. Honeycomb carbon: A review of graphene[J].Chemical Reviews,2009,110(1):132.
10 Balendhran S, Walia S, Nili H, et al. Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene[J].Small,2015,11(6):640.
11 Gupta A, Sakthivel T, Seal S. Recent development in 2D materials beyond graphene[J].Progress in Materials Science,2015,73:44.
12 Mannix A J, Kiraly B, Hersam M C, et al. Synthesis and chemistry of elemental 2D materials[J].Nature Reviews Chemistry,2017,1:0014.
13 Hu J, Xie K, Liu X, et al. Dramatically enhanced ion conductivity of gel polymer electrolyte for supercapacitor via h-BN nanosheets doping[J].Electrochimica Acta,2017,227:455.
14 Saha S, Samanta P, Murmu N C, et al. Electrochemical functiona-lization and in-situ deposition of the SAA@rGO/h-BN@Ni electrode for supercapacitor applications[J].Journal of Industrial and Enginee-ring Chemistry,2017,52:321.
15 Zhu Y, Cao C, Tao S, et al. Ultrathin nickel hydroxide and oxide nanosheets: Synthesis, characterizations and excellent supercapacitor performances[J].Scientific Reports,2014,4:5787.
16 da Silveira Firmiano E G, Rabelo A C, Dalmaschio C J, et al. Supercapacitor electrodes obtained by directly bonding 2D MoS2 on reduced graphene oxide[J].Advanced Energy Materials,2014,4(6):1301380.
17 Qu Q, Yang S, Feng X. 2D Sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors[J].Advanced Materials,2011,23(46):5574.
18 Zheng W, Sun Z M, Zhang P G, et al. Research progress on MXene, two dimensional nano-mateirals[J].Materials Review A: Review Papers,2017,31(5):1(in Chinese).
郑伟,孙正明,张培根,等.二维纳米材料MXene的研究进展[J].材料导报:综述篇,2017,31(5):1.
19 Xie D Y, Zhang Y, Chen J, et al. Overview on application of two dimension MXene in energy storage[J].New Chemical Letter,2017,45(10):23(in Chinese).
谢丹艳,张燕,陈江,等.二维过渡金属碳化物或碳氮化物在储能领域的应用进展[J].化工新型材料,2017,45(10):23.
20 Xu X, Li S, Zhang H, et al. A power pack based on organometallic perovskite solar cell and supercapacitor[J].ACS Nano,2015,9(2):1782.
21 Yu Z, Tetard L, Zhai L, et al. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions[J].Energy & Environmental Science,2015,8(3):702.
22 Liu Y, Wang Z, Veder J P M, et al. Highly defective layered double perovskite oxide for efficient energy storage via reversible pseudocapacitive oxygen-anion intercalation[J].Advanced Energy Materials,2018,8:1702604.
23 Xu X, Shi W, Li P, et al. Facile fabrication of three-dimensional graphene and metal-organic framework composites and their derivatives for flexible all-solid-state supercapacitors[J].Chemistry of Materials,2017,29(14):6058.
24 Salunkhe R R, Kaneti Y V, Yamauchi Y. Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: Progress and prospects[J].ACS Nano,2017,11(6):5293.
25 Guan C, Liu X, Ren W, et al. Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis[J].Advanced Energy Materials,2017,7(8):1602391.
26 Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J].Advanced Materials,2011,23(37):4248.
27 Naguib M, Mochalin V N, Barsoum M W, et al. 25th Anniversary article: MXenes: A new family of two-dimensional materials[J].Advanced Materials,2014,26(7):992.
28 Yang Y, Umrao S, Lai S, et al. Large-area highly conductive transparent two-dimensional Ti2CTx film[J].The Journal of Physical Chemistry Letters,2017,8(4):859.
29 Yan J, Ren C E, Maleski K, et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance[J].Advanced Functional Materials,2017,27(30):1701264.
30 Xu S, Wei G, Li J, et al. Flexible MXene-graphene electrodes with high volumetric capacitance for integrated co-cathode energy conversion/storage devices[J].Journal of Materials Chemistry A,2017,5:17442.
31 Dall’Agnese Y, Taberna P L, Gogotsi Y, et al. Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors[J].The Journal of Physical Chemistry Letters,2015,6(12):2305.
32 Anasori B, Xie Y, Beidaghi M, et al. Two-dimensional, ordered, double transition metals carbides (MXenes)[J].ACS Nano,2015,9(10):9507.
33 Hu Q, Wang H, Wu Q, et al. Two-dimensional Sc2C: A reversible and high-capacity hydrogen storage material predicted by first-principles calculations[J].International Journal of Hydrogen Energy,2014,39(20):10606.
34 Abdelmalak M N. MXenes: A new family of two-dimensional materials and its application as electrodes for Li-ion batteries[D].Drexel: Drexel University,2014.
35 Hu Q, Sun D, Wu Q, et al. MXene: A new family of promising hydrogen storage medium[J].The Journal of Physical Chemistry A,2013,117(51):14253.
36 Tang Q, Zhou Z, Shen P. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X=F, OH) monolayer[J].Journal of the American Chemical Society,2012,134(40):16909.
37 Shein I R, Ivanovskii A L. Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn (n=1, 2, and 3) from de-intercalated MAX phases: First-principles probing of their structural, electronic properties and relative stability[J].Computational Materials Science,2012,65:104.
38 Naguib M, Come J, Dyatkin B, et al. MXene: A promising transition metal carbide anode for lithium-ion batteries[J].Electrochemistry Communications,2012,16(1):61.
39 Kurtoglu M, Naguib M, Gogotsi Y, et al. First principles study of two-dimensional early transition metal carbides[J].MRS Communications,2012,2(4):133.
40 Xu S, Wei G, Li J, et al. Binder-free Ti3C2Tx MXene electrode film for supercapacitor produced by electrophoretic deposition method[J].Chemical Engineering Journal,2017,317:1026.
41 Li L, Zhang M, Zhang X, et al. New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors[J].Journal of Power Sources,2017,364:234.
42 Li H, Hou Y, Wang F, et al. Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable mxene and electrochemically exfoliated graphene[J].Advanced Energy Materials,2017,7(4):1601847.
43 Zhu M, Huang Y, Deng Q, et al. Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene[J].Advanced Energy Materials,2016,6(21):1600969.
44 Wang Y, Dou H, Wang J, et al. Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors[J].Journal of Power Sources,2016,327:221.
45 Barsoum M W. MAX phases: Properties of machinable ternary carbides and nitrides[M].New York:Wiley,2013:1.
46 Sun Z M. Progress in research and development on MAX phases: A family of layered ternary compounds[J].International Materials Reviews,2013,56(3):143.
47 Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage[J].Nature Reviews Materials,2017,2(2):16098.
48 Naguib M, Mashtalir O, Carle J, et al. Two-dimensional transition metal carbides[J].ACS Nano,2012,6(2):1322.
49 Ghidiu M, Lukatskaya M R, Zhao M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J].Nature,2014,516(7529):78.
50 Li G, Tan L, Zhang Y, et al. Highly efficiently delaminated single-layered MXene nanosheets with large lateral size[J].Langmuir,2017,33(36):9000.
51 Xie X, Xue Y, Li L, et al. Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system[J].Nanoscale,2014,6(19):11035.
52 Guo J, Peng Q, Fu H, et al. Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXene by first-principles calculations[J].Journal of Physical Chemistry C,2015,119(36):20923.
53 Guo X, Zhang X, Zhao S, et al. High adsorption capacity of heavy metals on two-dimensional MXenes: An ab initio study with molecular dynamics simulation[J].Physical Chemistry Chemical Physics,2015,18(1):228.
54 Meshkian R, Näslund LÅ, Halim J, et al. Synthesis of two-dimensional molybdenum carbide, Mo 2C, from the gallium based atomic laminate Mo2Ga2C[J].Scripta Materialia,2015,108:147.
55 Zhou J, Zha X, Zhou X, et al. Synthesis and electrochemical properties of two-dimensional hafnium carbide[J].ACS Nano,2017,11(4):3841.
56 Urbankowski P, Anasori B, Makaryan T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene)[J].Nanoscale,2016,8(22):11385.
57 Xu C, Wang L, Liu Z, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals[J].Nature Materials,2015,14(11):1135.
58 Hu T, Hu M, Li Z, et al. Interlayer coupling in two-dimensional titanium carbide MXenes[J].Physical Chemistry Chemical Physics,2016,18(30):20256.
59 Mashtalir O, Lukatskaya M R, Kolesnikov A I, et al. The effect of hydrazine intercalation on the structure and capacitance of 2D tita-nium carbide (MXene)[J].Nanoscale,2016,8(17):9128.
60 Li Z, Wang L, Sun D, et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2[J].Materials Science & Enginee-ring B,2014,191:33.
61 Naguib M, Unocic R R, Armstrong B L, et al. Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”[J].Dalton Transactions,2015,44(20):9353.
62 Peng Q, Guo J, Zhang Q, et al. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide[J].Journal of the American Chemical Society,2014,136(11):4113.
63 Luo J, Tao X, Zhang J, et al. Sn4+ ions decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance[J].ACS Nano,2016,10(2):2491.
64 Ling Z, Ren C E, Zhao M Q, et al. Flexible and conductive MXene films and nanocomposites with high capacitance[J].Proceedings of the National Academy of Sciences,2014,111(47):16676.
65 Wang H, Zhang J, Wu Y, et al. Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination[J].Applied Surface Science,2016,384:287.
66 Minoli G. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J].Science,2013,341(6153):1502.
67 Lipatov A, Alhabeb M, Lukatskaya M R, et al. MXene materials: Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes[J].Advanced Electronic Materials,2017,2(12):1337030.
68 Alhabeb M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J].Chemistry of Materials,2017,29(18):7633.
69 Dillon A D, Ghidiu M J, Krick A L, et al. Highly conductive optical quality solution-processed films of 2D titanium carbide[J].Advanced Functional Materials,2016,26(23):4162.
70 Ding L, Wei Y, Li L, et al. MXene molecular sieving membranes for highly efficient gas separation[J].Nature Communications,2018,9(1):155.
71 Ding L, Wei Y, Wang Y, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks[J].Angewandte Chemie International Edition,2017,56(7):1825.
72 Ren C E, Hatzell K B, Alhabeb M, et al. Charge-and size-selective ion sieving through Ti3C2Tx MXene membranes[J].The Journal of Physical Chemistry Letters,2015,6(20):4026.
73 Lukatskaya M R, Kota S, Lin Z, et al. Ultra-high-rate pseudocapa-citive energy storage in two-dimensional transition metal carbides[J].Nature Energy,2017,2(8):17105.
74 Navarro-Suárez A M, Van Aken K L, Mathis T, et al. Development of asymmetric supercapacitors with titanium carbide-reduced graphene oxide couples as electrodes[J].Electrochimica Acta,2018,259:752.
75 Hantanasirisakul K, Zhao M Q, Urbankowski P, et al. Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties[J].Advanced Electronic Materials,2016,2(6):1600050.
76 Liu Y, Zhang J, Zhang X, et al. Ti3C2Tx filler effect on the proton conduction property of polymer electrolyte membrane[J].ACS Applied Materials & Interfaces,2016,8(31):20352.
77 Ali A, Belaidi A, Ali S, et al. Transparent and conductive Ti3C2Tx (MXene) thin film fabrication by electrohydrodynamic atomization technique[J].Journal of Materials Science: Materials in Electronics,2016,27(5):5440.
78 Ying G, Dillon A D, Fafarman A T, et al. Transparent, conductive solution processed spincast 2D Ti2CTx (MXene) films[J].Materials Research Letters,2017,5(6):391.
79 Lv Z, Luo Y, Tang Y, et al. Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO2 nanowire composite[J].Advanced Materials,2018,30(2):1704531.
80 Hu M, Li Z, Zhang H, et al. Self-assembled Ti3C2Tx MXene film with high gravimetric capacitance[J].Chemical Communications,2015,51(70):13531.
81 Zhao M Q, Xie X, Ren C E, et al. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage[J].Advanced Materials,2017,29(37):1702410.
82 Qin L, Tao Q, El Ghazaly A, et al. High-performance ultrathin flexible solid-state supercapacitors based on solution processable Mo1.33C MXene and PEDOT∶PSS[J].Advanced Functional Mate-rials,2017,28(2):1703808.
83 Wu X, Hao L, Zhang J, et al. Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system[J].Journal of Membrane Science,2016,515:175.
84 Naguib M, Saito T, Lai S, et al. Ti3C2Tx(MXene)-polyacrylamide nanocomposite films[J].RSC Advances,2016,6(76):72069.
85 Aïssa B, Ali A, Mahmoud K A, et al. Transport properties of a highly conductive 2D Ti3C2Tx MXene/graphene composite[J].Applied Physics Letters, 2016,109(4):043109.
86 Ma Z, Zhou X, Deng W, et al. 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage[J].ACS Applied Materials & Interfaces,2018,10(4):3634.
87 Ren C E, Zhao M Q, Makaryan T, et al. Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-ion storage[J].ChemElectroChem,2016,3(5):689.
88 Xie X, Zhao M Q, Anasori B, et al. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices[J].Nano Energy,2016,26:513.
89 Liu W, Wang Z, Su Y, et al. Molecularly stacking manganese dioxi-de/titanium carbide sheets to produce highly flexible and conductive film electrodes with improved pseudocapacitive performances[J].Advanced Energy Materials,2017,7(22):1602834.
90 Tian Y, Yang C, Que W, et al. Flexible and free-standing 2D tita-nium carbide film decorated with manganese oxide nanoparticles as a high volumetric capacity electrode for supercapacitor[J].Journal of Power Sources,2017,359:332.
91 Xu K, Ji X, Zhang B, et al. Charging/discharging dynamics in two-dimensional titanium carbide (MXene) slit nanopore: Insights from molecular dynamic study[J].Electrochimica Acta,2016,196:75.
92 Wang Y, Shi Z, Huang Y, et al. Supercapacitor devices based on graphene materials[J].The Journal of Physical Chemistry C,2009,113(30):13103.
93 Wang H, Wu Y, Yuan X, et al. Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State-of-the-art progresses and challenges[J].Advanced Materials,2018,30(12):1704561.
94 Fauteux D, Koksbang R. Rechargeable lithium battery anodes: Alternatives to metallic lithium[J].Journal of Applied Electrochemistry,1992,23(1):1.
95 Lin Z, Sun D, Huang Q, et al. Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for lithium-ion batteries[J].Journal of Materials Chemistry A,2015,3(27):14096.
96 Sun D, Wang M, Li Z, et al. Two-dimensional Ti3C2 as anode material for Li-ion batteries[J].Electrochemistry Communications,2014,47(10):80.
97 Kuila T, Bose S, Mishra A K, et al. Chemical functionalization of graphene and its applications[J].Progress in Materials Science,2012,57(7):1061.
98 Ying Y, Liu Y, Wang X, et al. Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(Ⅵ) from water[J].ACS Applied Materials & Interfaces,2015,7(3):1795.
99 Naguib M, Mashtalir O, Lukatskaya M R, et al. One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes[J].Chemical Communications,2014,50(56):7420.
100 Ghassemi H, Harlow W, Mashtalir O, et al. In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2[J].Journal of Materials Chemistry A,2014,2(35):14339.
101 Khazaei M, Arai M, Sasaki T, et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides[J].Advanced Functional Materials,2013,23(17):2185.
102 Lane N J, Barsoum M W, Rondinelli J M. Correlation effects and spin-orbit interactions in two-dimensional hexagonal 5d transition metal carbides, Tan+1Cn(n=1,2,3)[J].Eerophysics Letters,2013,101(5):57004.
103 Hong Ng V M, Huang H, Zhou K, et al. Recent progress in la-yered transition metal carbides and/or nitrides (MXenes) and their composites: Synthesis and applications[J].Journal of Materials Chemistry A,2017,5(7):3039.
104 Mashtalir O, Naguib M, Dyatkin B, et al. Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid[J].Materials Chemistry & Physics,2013,139(1):147.
105 Jia J Z, Udo S. P and Si functionalized MXenes for metal-ion ba-ttery applications[J].2D Materials,2017,4(2):025073.
106 Luo J, Zhang W, Yuan H, et al. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lit-hium-ion capacitors[J].ACS Nano,2017,11(3):2459.
107 Wu X, Wang Z, Yu M, et al. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability[J].Advanced Materials,2017,29(24):1607017.
108 Er D, Li J, Naguib M, et al. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries[J].ACS Applied Materials & Interfaces,2014,6(14):11173.
109 Kajiyama S, Szabova L, Sodeyama K, et al. Sodium-ion intercalation mechanism in MXene nanosheets[J].ACS Nano,2016,10(3):3334.
110 Liang X, Garsuch A, Nazar L F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batte-ries[J].Angewandte Chemie International Edition,2015,54(13):3907.
111 Song J, Su D, Xie X, et al. Immobilizing polysulfides with MXene-functionalized separators for stable lithium-sulfur batteries[J].ACS Applied Materials & Interfaces,2016,8(43):29427.
112 Bao W, Liu L, Wang C, et al. Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries[J].Advanced Energy Materials,2018,8(13):1702485.
113 Vahid M A, Hadjikhani A, Shahbazmohamadi S, et al. Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries[J].ACS Nano,2017,11(11):11135.
114 Byeon A, Zhao M Q, Ren C E, et al. Two-dimensional titanium carbide MXene as a cathode material for hybrid magnesium/lit-hium-ion batteries[J].ACS Applied Materials & Interfaces,2017,9(5):4296.
115 Xue Q, Pei Z, Huang Y, et al. Mn3O4 nanoparticles on layer-structured Ti3C2 MXene towards the oxygen reduction reaction and zinc-air batteries[J].Journal of Materials Chemistry A,2017,5:20818.
116 Wang J, Dong S, Li H, et al. Facile synthesis of layered Li4Ti5O12-Ti3C2Tx (MXene) composite for high-performance lithium ion battery[J].Journal of Electroanalytical Chemistry,2018,810:27.
117 Chen C, Xie X, Anasori B, et al. MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries[J].Angewandte Chemie International Edition,2018,5:20818.
118 Ahmed B, Anjum D H, Gogotsi Y, et al. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes[J].Nano Energy,2017,34:249.
119 Zhang H, Wang L, Shen C, et al. Synthesis of NaV6O15 nanorods via thermal oxidation of sodium-intercalated 2D V2CTx and their electrochemical properties as anode for lithium-ion batteries[J].Electrochimica Acta,2017,248:178.
120 Shen C, Wang L, Zhou A, et al. MoS2-decorated Ti3C2 MXene nanosheet as anode material in lithium-ion batteries[J].Journal of The Electrochemical Society,2017,164(12):A2654. 121 Pourali Z, Sovizi M R, Yaftian M R. Two-dimensional Ti3C2TX/CMK-5 nanocomposite as high performance anodes for lithium batteries[J].Journal of Alloys and Compounds,2017,738:130.
122 Liu F, Zhou J, Wang S, et al. Preparation of high-purity V2C MXene and electrochemical properties as Li-ion batteries[J].Journal of The Electrochemical Society,2017,164(4):A709.
123 Zhao S, Meng X, Zhu K, et al. Li-ion uptake and increase in interlayer spacing of Nb4C3 MXene[J].Energy Storage Materials,2017,8:42.
124 Li L, Wang F, Zhu J, et al. The facile synthesis of layered Ti2C MXene/carbon nanotube composite paper with enhanced electrochemical properties[J].Dalton Transactions,2017,46(43):14880.
125 Du F, Tang H, Pan L, et al. Environmental friendly scalable production of colloidal 2D titanium carbonitride MXene with minimized nanosheets restacking for excellent cycle life lithium-ion batteries[J].Electrochimica Acta,2017,235:690.
126 Chen C, Boota M, Xie X, et al. Charge transfer induced polymerization of EDOT confined between 2D titanium carbide layers[J].Journal of Materials Chemistry A,2017,5(11):5260.
127 Byeon A, Hatter C B, Park J H, et al. Molybdenum oxide/carbon composites derived from the CO2 oxidation of Mo2CTx (MXene) for lithium ion battery anodes[J].Electrochimica Acta,2017,258:979.
128 Zou G, Zhang Z, Guo J, et al. Synthesis of MXene/Ag composites for extraordinary long cycle lifetime lithium storage at high rates[J].ACS Applied Materials & Interfaces,2016,8(34):22280.
129 Zhao M Q, Torelli M, Ren C E, et al. 2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage[J].Nano Energy,2016,30:603.
130 Zhang H, Dong H, Zhang X, et al. Cu2O hybridized titanium carbide with open conductive frameworks for lithium-ion batteries[J].Electrochimica Acta,2016,202:24.
131 Zhang C J, Kim S J, Ghidiu M, et al. Layered orthorhombic Nb2O5@Nb4C3Tx and TiO2@Ti3C2Tx hierarchical composites for high performance Li-ion batteries[J].Advanced Functional Mate-rials,2016,26(23):4143.
132 Wang F, Wang Z, Zhu J, et al. Facile synthesis SnO2 nanoparticle-modified Ti3C2 MXene nanocomposites for enhanced lithium sto-rage application[J].Journal of Materials Science,2016,52(7):3556.
133 Tang H, Zhuang S, Bao Z, et al. Two-step oxidation of Mxene in the synthesis of layer-stacked anatase titania with enhanced lithium-storage performance[J].ChemElectroChem,2016,3(6):871.
134 Ahmed B, Anjum D H, Hedhili M N, et al. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes[J].Nanoscale,2016,8(14):7580.
135 Sun D D, Hu Q K, Li Z Y, et al. Research progress of new two-dimensional MXene crystals[J].Journal of Synthetic Crystals,2014,43(11):2950(in Chinese).
孙丹丹,胡前库,李正阳,等.新型二维晶体MXene的研究进展[J].人工晶体学报,2014,43(11):2950.
136 Mashtalir O, Lukatskaya M R, Zhao M Q, et al. Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices[J].Advanced Materials,2015,27(23):3501.
137 Kim S J, Naguib M, Zhao M, et al. High mass loading, binder-free MXene anodes for high areal capacity Li-ion batteries[J].Electrochimica Acta,2015,163:246.
138 Naguib M, Halim J, Lu J, et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries[J].Journal of the American Chemical Society,2013,135(43):15966.
139 Wu Y, Nie P, Wu L, et al. 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries[J].Chemical Enginee-ring Journal,2018,334:932.
140 Li J, Yan D, Hou S, et al. Improved sodium-ion storage perfor-mance of Ti3C2Tx MXenes by sulfur doping[J].Journal of Materials Chemistry A,2018,6:1234.
141 Zhang T, Jiang X, Li G, et al. A red-phosphorous-assisted ball-milling synthesis of few-layered Ti3C2Tx (MXene) nanodot composite[J].ChemNanoMat,2018,4:56.
142 Bak S M, Qiao R, Yang W, et al. Na-ion intercalation and charge storage mechanism in 2D vanadium carbide[J].Advanced Energy Materials,2017,7(20):1700959.
143 Liang X, Rangom Y, Kwok C Y, et al. Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts[J].Advanced Materials,2017,29(3):1603040.
144 Bao W, Xie X, Xu J, et al. Confined sulfur in 3D MXene/reduced graphene oxide hybrid nanosheets for lithium-sulfur battery[J].Chemistry,2017,23(51):12613.
145 Zhao X, Liu M, Chen Y, et al. Fabrication of layered Ti3C2 with an accordion-like structure as a potential cathode material for high performance lithium-sulfur batteries[J].Journal of Materials Chemistry A,2015,3(15):7870.
146 Gogotsi Y, Simmon P. True performance metrics in electrochemical energy storage[J].Science,2011,334:917.
147 Lin Z, Barbara D, Taberna P L, et al. Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte[J].Journal of Power Sources,2016,326:575.
148 Lin Z, Rozier P, Duployer B, et al. Electrochemical and in-situ X-ray diffraction studies of Ti3 C2Tx MXene in ionic liquid electrolyte[J].Electrochemistry Communications,2016,72:50.
149 Jiang Q, Kurra N, Alhabeb M, et al. All pseudocapacitive MXene-RuO2 asymmetric supercapacitors[J].Advanced Energy Materials,2018,8:1703043.
150 Huang P, Lethien C, Pinaud S, et al. On-chip and freestanding elastic carbon films for micro-supercapacitors[J].Science,2016,351(6274):691.
151 Elkady M F, Kaner R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage[J].Nature Communications,2013,4(2):1475.
152 Xie Y, Naguib M, Mochalin V N, et al. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides[J].Journal of the American Chemical Society,2014,136(17):6385.
153 Li J, Yuan X, Lin C, et al. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification[J].Advanced Energy Materials,2017,7(15):1602725.
154 Wang H, Zhang J, Wu Y, et al. Chemically functionalized two-dimensional titanium carbide MXene by in situ grafting-intercalating with diazonium ions to enhance supercapacitive performance[J].Journal of Physics and Chemistry of Solids,2018,115:172.
155 Ghidiu M, Kota S, Halim J, et al. Alkylammonium cation intercalation into Ti3C2 (MXene): Effects on properties and ion-exchange capacity estimation[J].Chemistry of Materials,2017,29(3):1099.
156 Boota M, Pasini M, Galeotti F, et al. Interaction of polar and nonpolar polyfluorenes with layers of two-dimensional titanium carbide (MXene): Intercalation and pseudocapacitance[J].Chemistry of Materials,2017,29(7):2731.
157 Gao Q, Come J, Naguib M, et al. Synergetic effects of K+ and Mg2+ ion intercalation on the electrochemical and actuation properties of the two-dimensional Ti3C2 MXene[J].Faraday Discuss,2017,199:393.
158 Come J, Black J M, Lukatskaya M R, et al. Controlling the actuation properties of MXene paper electrodes upon cation intercalation[J].Nano Energy,2015,17:27.
159 Tang Y, Zhu J, Wu W, et al. Synthesis of nitrogen-doped two-dimensional Ti3C2 with enhanced electrochemical performance[J].Journal of The Electrochemical Society,2017,164(4):A923.
160 Wen Y, Rufford T E, Chen X, et al. Nitrogen-doped Ti3C2Tx MXene electrodes for high-perfor-mance supercapacitors[J].Nano Energy,2017,38:368.
161 Zhao T, Zhang J, Du Z, et al. Dopamine-derived N-doped carbon decorated titanium carbide composite for enhanced supercapacitive performance[J].Electrochimica Acta,2017,254:308.
162 Yang C, Que W, Tang Y, et al. Nitrogen and sulfur Co-doped 2D titanium carbides for enhanced electrochemical performance[J].Journal of The Electrochemical Society,2017,164(9):A1939.
163 Yan P, Zhang R, Jia J, et al. Enhanced supercapacitive perfor-mance of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte[J].Journal of Power Sources,2015,284:38.
164 Zhao M Q, Ren C E, Ling Z, et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance[J].Advanced Materials,2014,27(2):339.
165 Zhu J F, Tang Y, Yang C H, et al. Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance[J].Journal of the Electrochemical Society,2016,163(5):1787.
166 Boota M, Anasori B, Voigt C, et al. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the la-yers of 2D titanium carbide (MXene)[J].Advanced Materials,2016,28(7):1517.
167 Li X, Zhang G, Bai X, et al. Highly conducting graphene sheets and Langmuir-Blodgett films[J].Nature Nanotechnology,2008,3(9):538.
168 Ren Y, Zhu J, Wang L, et al. Synthesis of polyaniline nanoparticles deposited on two-dimensional titanium carbide for high-performance supercapacitors[J].Materials Letters,2018,214:84.
169 Li X, Zhu J, Wang L, et al. In-situ growth of carbon nanotubes on two-dimensional titanium carbide for enhanced electrochemical performance[J].Electrochimica Acta,2017,258:291.
170 Fu Q, Wang X, Zhang N, et al. Self-assembled Ti3C2Tx/SCNT composite electrode with improved electrochemical performance for supercapacitor[J].Journal of Colloid and Interface Science,2018,511:128.
171 Krishnamoorthy K, Pazhamalai P, Sahoo S, et al. Titanium carbide sheet based high performance wire type solid state supercapacitors[J].Journal of Materials Chemistry A,2017,5(12):5726.
172 Collini P, Kota S, Dillon A D, et al. Electrophoretic deposition of two-dimensional titanium carbide (MXene) thick films[J].Journal of The Electrochemical Society,2017,164(9):D573.
173 Couly C, Alhabeb M, Van Aken K L, et al. Asymmetric flexible MXene-reduced graphene oxide micro-supercapacitor[J].Advanced Electronic Materials,2017,4:1700339.
174 Hu H, Hua T. An easily manipulated protocol for patterning of MXenes on paper for planar micro-supercapacitors[J].Journal of Materials Chemistry A,2017,5(37):19639.
175 Hu M, Hu T, Cheng R, et al. MXene-coated silk-derived carbon cloth toward flexible electrode for supercapacitor application[J].Journal of Energy Chemistry,2018,27(1):161.
176 Li B, Zhang D, Liu Y, et al. Flexible Ti3C2 MXene-lithium film with lamellar structure for ultrastable metallic lithium anodes[J].Nano Energy,2017,39:654.
177 Li H, Musharavati F, Zalenezhad E, et al. Electrodeposited Ni Co layered double hydroxides on titanium carbide as a binder-free electrode for supercapacitors[J].Electrochimica Acta,2018,261:178.
178 Lu X, Zhu J, Wu W, et al. Hierarchical architecture of PANI@TiO2/Ti3C2Tx ternary composite electrode for enhanced electrochemical performance[J].Electrochimica Acta,2017,228:282.
179 Seyedin S, Yanza E R S, Razal Joselito M. Knittable energy storing fiber with high volumetric performance made from predominantly MXene nanosheets[J].Journal of Materials Chemistry A,2017,5(46):24076.
180 Syamsai R, Kollu P, Kwan Jeong S, et al. Synthesis and properties of 2D-titanium carbide MXene sheets towards electrochemical energy storage applications[J].Ceramics International,2017,43(16):13119.
181 Tao Q, Dahlqvist M, Lu J, et al. Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering[J].Nature Communications,2017,8:14949.
182 Yang C, Que W, Yin X, et al. Improved capacitance of nitrogen-doped delaminated two-dimensional titanium carbide by urea-assisted synthesis[J].Electrochimica Acta,2017,225:416.
183 Yang Q, Xu Z, Fang B, et al. MXene/graphene hybrid fibers for high performance flexible supercapacitors[J].Journal of Materials Chemistry A,2017,5(42):22113.
184 Xia Q X, Fu J, Yun J M, et al. High volumetric energy density annealed-MXene-nickel oxide/MXene asymmetric supercapacitor[J].RSC Advances,2017,7(18):11000.
185 Zhao R, Wang M, Zhao D, et al. Molecular-level heterostructures assembled from titanium carbide MXene and Ni-Co-Al layered double-hydroxide nanosheets for all-solid-state flexible asymmetric high-energy supercapacitors[J].ACS Energy Letters,2017,3(1):132.
186 Zheng W, Zhang P, Tian W, et al. Microwave-assisted synthesis of SnO2-Ti3C2 nanocomposite for enhanced supercapacitive perfor-mance[J].Materials Letters,2017,209:122.
187 Rakhi R B, Ahmed B, Anjum D, et al. Direct chemical synthesis of MnO2 nanowhiskers on transition-metal carbide surfaces for supercapacitor applications[J].ACS Applied Materials & Interfaces,2016,8(29):18806.
188 Kurra N, Ahmed B, Gogotsi Y, et al. MXene-on-paper coplanar microsupercapacitors[J].Advanced Energy Materials,2016,6(24):1601372.
189 Dall’Agnese Y, Rozier P, Taberna P L, et al. Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes[J].Journal of Power Sources,2016,306:510.
190 Shen B S, Wang H, Wu L J, et al. All-solid-state flexible microsupercapacitor based on two-dimensional titanium carbide[J].Chinese Chemical Letters,2016,27(10):1586.
191 Tang Y, Zhu J, Yang C, et al. Enhanced supercapacitive perfor-mance of manganese oxides doped two-dimensional titanium carbide nanocomposite in alkaline electrolyte[J].Journal of Alloys and Compounds,2016,685:194.
192 Wang F, Cao M, Qin Y, et al. ZnO nanoparticle-decorated two-dimensional titanium carbide with enhanced supercapacitive perfor-mance[J].RSC Advances,2016,6(92):88934.
193 Peng Y Y, Akuzum B, Kurra N, et al. All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage[J].Energy & Environmental Science,2016,9(9):2847.
194 Wang L, Zhang H, Wang B, et al. Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process[J].Electronic Materials Letters,2016,12(5):702.
195 Zhang C, Beidaghi M, Naguib M, et al. Synthesis and charge sto-rage properties of hierarchical niobium pentoxide/carbon/niobium carbide (MXene) hybrid materials[J].Chemistry of Materials,2016,28(11):3937.
196 Zhao C, Wang Q, Zhang H, et al. Two-dimensional titanium carbide/RGO composite for high-performance supercapacitors[J].ACS Applied Materials & Interfaces,2016,8(24):15661.
197 Zhu J, Lu X, Wang L. Synthesis of a MoO3/Ti3C2Tx composite with enhanced capacitive performance for supercapacitors[J].RSC Advances,2016,6(100):98506.
198 Lin S Y, Zhang X. Two-dimensional titanium carbide electrode with large mass loading for supercapacitor[J].Journal of Power Sources,2015,294:354.
199 Rakhi R B, Ahmed B, Hedhili M N, et al. Effect of postetch annealing gas composition on the structural and electrochemical pro-perties of Ti2CTx MXene electrodes for supercapacitor applications[J].Chemistry of Materials,2015,27(15):5314.
200 Xie X, Chen S, Ding W, et al. An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X = OH, F) nanosheets for oxygen reduction reaction[J].Chemical Communications,2013,49(86):10112.
201 Liu Y. Superior catalytic activity derived from a two-dimensional Ti3C2 precursor towards the hydrogen storage reaction of magne-sium hydride[J].Chemical Communications,2015,52(4):705
202 Kumar S, Schwingenschlögl U. Thermoelectric performance of functionalized Sc2C MXenes[J].Physical Review B,2016,94(3):195.
203 Dong Y, Wu Z S, Zheng S, et al. Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities[J].ACS Nano,2017,11(5):4792.
204 Ding B, Wang J, Wan Y, et al. A two-step etching route to ultrathin carbon nanosheets for high performance electrical double layer capacitors[J].Nanoscale,2016,8(21):11136.
[1] 王坤宇, 冯运莉, 柳昆. 纳米复相永磁材料的研究进展[J]. 材料导报, 2019, 33(z1): 116-121.
[2] 孙亚兵, 包兆先, 霍子伟, 杨玲, 许积文, 周昌荣, 王华. (Bi0.5Na0.5)0.94Ba0.06Ti1-x(Yb0.5Nb0.5)xO3无铅陶瓷的结构,储能、应变、介电及阻抗性能研究[J]. 材料导报, 2019, 33(z1): 171-177.
[3] 郑贝贝, 邵玲. 国内Bi系高温超导材料制备工艺研究进展[J]. 材料导报, 2019, 33(z1): 318-320.
[4] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[5] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[6] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[7] 左迎峰, 李萍, 屠茹茹, 赵星, 袁光明, 吴义强. 基于响应曲面法优化酸解氧化制备高醛基含量的双醛淀粉的工艺条件[J]. 材料导报, 2019, 33(2): 335-341.
[8] 卫芳彬, 张雷阳, 王颖, 李洋, 刘岗. 二氧化铈掺杂钛酸铋钠基陶瓷的高储能密度及温度稳定性[J]. 材料导报, 2019, 33(16): 2648-2653.
[9] 张文华, 吕毓静, 刘鹏宇. EPS混凝土研究进展综述[J]. 材料导报, 2019, 33(13): 2214-2228.
[10] 魏明海, 孙丽, 张春巍, 齐佩佩, 朱洁. 纳米氧化锆和氧化硅混合体系剪切增稠液的流变性能[J]. 材料导报, 2019, 33(12): 1969-1974.
[11] 张潇华, 于思荣, 谭哲, 郭丽娟, 刘旭. 304不锈钢在Al-6Si-10Cu储能合金液中的腐蚀行为[J]. 材料导报, 2019, 33(10): 1681-1684.
[12] 邢小光, 许金余, 白二雷, 朱靖塞, 王谕贤. 纳米Fe2O3水泥基复合材料制备的响应曲面研究[J]. CLDB, 2018, 32(8): 1367-1372.
[13] 成小乐, 尹君, 屈银虎, 符寒光, 赵冰. 连续碳化硅纤维增强钛基(SiCf/Ti)复合材料的制备技术[J]. 《材料导报》期刊社, 2018, 32(5): 796-807.
[14] 王赫, 王洪杰, 王闻宇, 金欣, 林童. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 730-734.
[15] 刘兰燕,宋俊,程博闻,薛文池,郑云波. 木质素基碳纤维制备的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 405-411.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed