Please wait a minute...
CLDB  2017, Vol. 31 Issue (23): 73-77    https://doi.org/10.11896/j.issn.1005-023X.2017.023.009
  专题栏目:超高性能混凝土及其工程应用 |
超高性能混凝土流变特性及其对纤维分散性的影响*
张倩倩1, 2, 刘建忠1, 2, 周华新1, 2, 光鉴淼1, 2, 张丽辉1, 2, 林玮1, 2, 刘加平2, 3
1 江苏苏博特新材料股份有限公司,南京211103;
2 高性能土木工程材料国家重点实验室,南京211103;
3 东南大学材料科学与工程学院,南京210096
Rheological Properties of Ultra-high Performance Concrete and Its Effect on the Fiber Dispersion Within the Material
ZHANG Qianqian1, 2, LIU Jianzhong1, 2, ZHOU Huaxin1, 2, GUANG Jianmiao1, 2, ZHANG Lihui1, 2, LIN Wei1, 2, LIU Jiaping2, 3
1 Jiangsu Sobute New Materials Co. Ltd., Nanjing 211103;
2 State Key Laboratory of High Performance Civil Engineering Materials, Nanjing 211103;
3 School of Materials Science and Engineering, Southeast University, Nanjing 210096
下载:  全 文 ( PDF ) ( 906KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 优异的分散性能是纤维充分发挥增强增韧作用的关键。为了明确高掺量钢纤维在超高性能混凝土(UHPC)中的分散特征并提高纤维的分散性,采用抗压强度、抗弯强度等力学性能试验、混凝土流变仪以及图像分析技术,分别研究了降粘掺合料、钢纤维掺量对UHPC力学性能、流变性能以及纤维分散性能的影响。结果表明:降粘掺合料对UHPC力学性能无明显提升作用,但可显著降低UHPC基体的屈服应力和塑性粘度,同时可降低钢纤维导致的屈服应力和塑性粘度增加幅度;随着纤维掺量的增加,纤维轴向取向系数和有效利用率降低,而降粘掺合料可提高纤维轴向取向系数和有效利用率;UHPC基体的流变性能、纤维分散性能以及力学性能三者密切相关,基体流变参数越小,纤维轴向取向系数越高、纤维有效利用率越高,则UHPC力学性能越好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张倩倩
刘建忠
周华新
光鉴淼
张丽辉
林玮
刘加平
关键词:  超高性能混凝土  钢纤维  降粘掺合料  流变性能  纤维分散    
Abstract: High dispersion is the key to achieve optimum benefits from the fibers for UHPC. In order to understand and improve the fiber dispersion in ultra-high performance concrete (UHPC) with high content of steel fiber (SF), this work employed concrete rheometer, image analysis technology and mechanical properties tests such as compressive strength, flexural strength, to investigate the effects of viscosity-reducing admixture and SF content on UHPC��s mechanical properties, rheological properties and fiber dispersion. Results showed that viscosity-reducing admixture could significantly reduce the UHPC matrix��s yield stress and plastic viscosity, and alleviate the increases of yield stress and plastic viscosity induced by SF addition. Both axial orientation factor and fiber efficiency would decrease by increasing SF content, but increase with the dosage of viscosity-reducing admixture. Our work suggests that the rheological properties, fiber distribution and mechanical properties of UHPC are highly correlated: lower rheological parameters can lead to higher axial orientation factor and higher fiber efficiency, and consequently, higher mechanical properties of the SF-contained UHPC.
Key words:  ultra-high performance concrete    steel fiber    viscosity-reducing admixture    rheological property    fiber dispersion
               出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU528  
基金资助: *国家自然科学基金(51578269); 江苏省科技计划青年基金(BK20141012)
作者简介:  张倩倩:女,1986年生,硕士,工程师,主要从事高强混凝土、超高性能混凝土流变性能及制备技术等研究 E-mail:zhangqianqian@cnjsjk.cn
引用本文:    
张倩倩, 刘建忠, 周华新, 光鉴淼, 张丽辉, 林玮, 刘加平. 超高性能混凝土流变特性及其对纤维分散性的影响*[J]. CLDB, 2017, 31(23): 73-77.
ZHANG Qianqian, LIU Jianzhong, ZHOU Huaxin, GUANG Jianmiao, ZHANG Lihui, LIN Wei, LIU Jiaping. Rheological Properties of Ultra-high Performance Concrete and Its Effect on the Fiber Dispersion Within the Material. Materials Reports, 2017, 31(23): 73-77.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.009  或          http://www.mater-rep.com/CN/Y2017/V31/I23/73
1 Blais P Y, Couture M. Precast, prestressed pedestrian bridge-world’s first reactive powder concrete structure[J]. PCIJ, 1999, 44(5): 60.
2 Resplendino J. State of the art of design and construction of UHPFRC structures in France[C]∥3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Kassel, 2012: 27.
3 Wang C, Yang C H, Liu F, et al. Preparation of ultra-high performance concrete with common technology and materials[J]. Cem Concr Compos, 2012, 34(4):538.4 Yazlcl H, YardImcI M Y, AydIn S, et al. Mechanical properties of reactive powder concrete containing mineral admixtures under diffe-rent curing regimes[J]. Constr Build Mater, 2009, 23(3):1223.
5 Zhang Y, Sun W, Liu S, et al. Preparation of C200 green reactive powder concrete and its static-dynamic behaviors[J]. Cem Concr Compos, 2008, 30(9):831.
6 Gr?ger J, Viet Tue N, Wille K. Bending behaviour and variation of flexural parameters of UHPFRC[C]∥3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Kassel, 2012:419.
7 Yang I H, Joh C, Kim B S. Structural behavior of ultra high performance concrete beams subjected to bending[J]. Eng Struct, 2010, 32(11):3478.
8 Empelmann M, Teutsch M, Steven G. Improvement of the post fracture behaviour of UHPC by fibres[C]∥Second International Symposium on Ultra High Performance Concrete. Kassel, 2008:177.
9 Lohaus L, Elsmeier K. Fatigue behaviour of plain and fibre reinforced ultra-high performance concrete[C]∥3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Kassel, 2012: 631.
10 Wille K, Parra-Montesinos G J. Effect of beam size, casting me-thod, and support conditions on flexural behavior of ultra-high-performance fiber-reinforced concrete[J]. ACI Mater, 2012, 109:379.
11 Pansuk W, Sato H, Sato Y, et al. Tensile behaviors and fiber orientation of UHPC[C]∥2nd International Symposium on Ultra High Performance Concrete. Kassel, 2008:161.
12 Kim S W, Kang S T, Park J J, et al. Effect of filling method on fibre orientation & dispersion and mechanical properties of UHPC[C]∥2nd International Symposium on Ultra High Performance Concrete. Kassel, 2008: 185.
13 St?hli P, Custer R, Mier J G M V. On flow properties, fibre distribution, fibre orientation and flexural behaviour of FRC[J]. Mater Struct, 2008, 41(1):189.
14 Gettu R, Gardner D R, Saldívar H, et al. Study of the distribution and orientation of fibers in SFRC specimens[J]. Mater Struct, 2005, 38(1):31.
15 Li M, Li V C. Rheology, fiber dispersion, and robust properties of engineered cementitious composites[J]. Mater Struct, 2013, 46:405.
16 Meng W, Khayat K H. Improving flexural performance of ultra-high-performance concrete by rheology control of suspending mortar[J]. Compos Part B Eng, 2017, 117:26.
17 Boulekbache B, Hamrat M, Chemrouk M, et al. Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material[J]. Constr Build Mater, 2010, 24(9):1664.
18 Liu J, Li C, Du Z, et al. Characterization of fiber distribution in steel fiber reinforced cementitious composites with low water-binder ratio[J]. Indian Eng Mater Sci, 2011, 18(6):449.
19 Dupont D, Vandewalle L. Distribution of steel fibres in rectangular sections[J]. Cem Concr Compos, 2005, 27(3):391.
20 刘建忠, 张丽辉, 李长风, 等. 聚乙烯醇纤维在水泥基复合材料中的分散性表征及调控[J]. 硅酸盐学报, 2015, 43(8):1061.
21 Heirman G, Vandewalle L, Gemert D V, et al. Integration approach of the couette inverse problem of powder type self-compacting concrete in a wide-gap concentric cylinder rheometer[J]. Non-Newtonian Fluid Mech, 2008, 150(2):93.
22 Liu J, Wang K, Zhang Q, et al. Influence of superplasticizer dosage on the viscosity of cement paste with low water-binder ratio[J]. Constr Build Mater, 2017, 149:359.
23 Martinie L, Rossi P, Roussel N. Rheology of fiber reinforced cementitious materials: Classification and prediction[J]. Cem Concr Res, 2010, 40(2):226.
24 Nguyen T L H, Roussel N, Coussot P. Correlation between L-box test and rheological parameters of a homogeneous yield stress fluid[J]. Cem Concr Res, 2006, 36(10):1789.
[1] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[2] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[3] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[4] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[5] 戴红, 刘跃军, 崔玲娜, 李秋艾. PBSu/PBAu嵌段聚酯酰脲共聚物的合成及流变性能[J]. 材料导报, 2019, 33(2): 347-351.
[6] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[7] 周昱程, 刘娟红, 纪洪广, 付士峰, 谷峪. 温度-复合盐耦合条件下纤维混凝土井壁冲击倾向性试验研究[J]. 材料导报, 2019, 33(16): 2671-2676.
[8] 程国君, 产爽爽, 陈晨, 钱家盛, 丁国新, 王周锋. 改性剂对TiN/PS纳米复合材料流变行为的影响[J]. 材料导报, 2019, 33(14): 2444-2449.
[9] 白静静, 苏会博, 刘志伟. 异氰酸酯功能化碳纳米管/热塑性聚氨酯弹性体复合材料的制备及流变性能[J]. 材料导报, 2018, 32(24): 4386-4391.
[10] 李革, 徐泽华, 牛建刚. 塑钢纤维轻骨料混凝土细观破坏过程的数值模拟[J]. 《材料导报》期刊社, 2018, 32(14): 2412-2417.
[11] 崔亚楠,于庆年,韩吉伟,陈超. 复杂气候条件下胶粉改性沥青的低温性能[J]. 《材料导报》期刊社, 2018, 32(12): 2078-2084.
[12] 张婷婷,董珈豪,王蒙,韦良强,秦舒浩. 分散相含量对乙烯-醋酸乙烯酯共聚物/聚丙烯原位微纤复合 材料微纤形态、结晶行为及流变和力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2032-2037.
[13] 李季, 石少卿, 何秋霖, 王起帆. 钢管钢纤维高强混凝土抗冲击压缩性能的试验研究与数值模拟*[J]. CLDB, 2017, 31(23): 125-131.
[14] 杨医博, 杨凯越, 吴志浩, 林少群, 丘广宏, 燕哲, 彭章锋, 林燕姿, 郭文瑛, 王恒昌. 配筋超高性能混凝土用作免拆模板对短柱力学性能影响的实验研究*[J]. CLDB, 2017, 31(23): 120-124.
[15] 程俊, 刘加平, 刘建忠, 张倩倩, 张丽辉, 林玮, 韩方玉. 含粗骨料超高性能混凝土力学性能研究及机理分析*[J]. CLDB, 2017, 31(23): 115-119.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed