Please wait a minute...
CLDB  2017, Vol. 31 Issue (9): 158-164    https://doi.org/10.11896/j.issn.1005-023X.2017.09.022
  新材料新技术 |
墨水直写、喷墨打印和激光直写技术及其在微电子器件中的应用*
陈燎, 唐兴伟, 周涵, 范同祥
上海交通大学金属基复合材料国家重点实验室,上海 200240
Direct Ink Writing, Inkjet Printing and Direct Laser Writing Techniques and Their Applications in Microelectronics
CHEN Liao, TANG Xingwei, ZHOU Han, FAN Tongxiang
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240
下载:  全 文 ( PDF ) ( 1969KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 直写技术是一种新型微加工技术,其加工过程不需模板并可在亚微米至厘米范围实现材料加工成型。墨水直写、喷墨打印和激光直写作为最常用的直写技术,具有强大的二维、三维成型能力和优异的成型精度,可实现金属、陶瓷、聚合物、水凝胶等复杂构型的程序化构筑,被广泛应用于微电子、组织工程、微流控等领域。阐述了这3种直写技术的构型原理和材料选择,重点介绍了其在微电子器件制造中的应用,讨论了当前研究的难点和热点问题,并对其未来发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈燎
唐兴伟
周涵
范同祥
关键词:  直写技术  微电子制造  电极    
Abstract: Direct writing is one kind of micro-fabrication technologies which can realize materials fabrication and processing in a broad range of size from sub-micrometer to several centimeters without masks. Direct ink writing, inkjet printing and direct laser writing are the most widely used direct writing technologies which enable fast and accurate fabrication of structures with high resolutions. A variety of materials including metals, ceramics, polymers and hydrogels can be processed for the formation of complicated two and three-dimensional architectures by these techniques. Therefore, they are widely used in many different fields such as microelectronics, tissue engineering, microfluidics and so on. In this review, we summarize the materials and principles of the three direct writing techniques, discuss their advantages and disadvantages, and then focus on their applications on microelectronics. An overview of the state-of-art developments in this area is given, the main challenges are discussed and the future trends is predicted.
Key words:  direct writing    microelectronics    electrodes
               出版日期:  2017-05-10      发布日期:  2018-05-03
ZTFLH:  TP39  
  TB332  
基金资助: *全国优博作者专项基金(201434); 上海市青年科技启明星计划(15QA1402700)
通讯作者:  范同祥:男,1971年生,博士,教授,博士研究生导师,研究方向为特种功能金属基复合材料和仿生材料 E-mail:txfan@sjtu.edu.cn   
作者简介:  陈燎:男,1991年生,硕士研究生,研究方向为三维直写技术 E-mail:chenliao@sjtu.edu.cn
引用本文:    
陈燎, 唐兴伟, 周涵, 范同祥. 墨水直写、喷墨打印和激光直写技术及其在微电子器件中的应用*[J]. CLDB, 2017, 31(9): 158-164.
CHEN Liao, TANG Xingwei, ZHOU Han, FAN Tongxiang. Direct Ink Writing, Inkjet Printing and Direct Laser Writing Techniques and Their Applications in Microelectronics. Materials Reports, 2017, 31(9): 158-164.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.09.022  或          http://www.mater-rep.com/CN/Y2017/V31/I9/158
[1] Hon K K B, Li L, Hutchings I M. Direct writing technology—Advances and developments[J]. CIRP Annals—Manuf Technol,2008,57(2):601.
[2] Ambrosi A, Pumera M.3D-printing technologies for electrochemical applications[J]. Chem Soc Rev,2016,45(10): 2740.
[3] Gratson G M, et al.Microperiodic structures: Direct writing of three-dimensional webs[J]. Nature,2004, 428(6981):386.
[4] Arnold C, Sutto T, et al.Direct-write laser processing creates tiny electrochemical systems[J]. Laser Focus World,2004,40(5):S9.
[5] Selimis A, Mironov V, Farsari M.Direct laser writing: Principles and materials for scaffold 3D printing[J]. Microelectron Eng,2015,132:83.
[6] Lewis J A.Direct ink writing of 3D functional materials[J]. Adv Funct Mater,2006,16(17):2193.
[7] Therriault D, White S R, Lewis J A.Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly[J]. Nat Mater,2003,2(4):265.
[8] Smay J E, Cesarano Ⅲ J, Tuttle B A, et al.Piezoelectric properties of 3-X periodic Pb(ZrxTi1-x)O3-polymer composites[J]. J Appl Phys,2002,92(10):6119.
[9] Lous G M, Cornejo I A, McNulty T F, et al. Fabrication of piezoelectric ceramic/polymer composite transducers using fused deposition of ceramics[J]. J Am Ceram Soc,2000,83(1):124.
[10] Duoss E B, Twardowski M, Lewis J A.Sol-gel inks for direct-write assembly of functional oxides[J]. Adv Mater,2007, 19(21):3485.
[11] Barry R A, Shepherd R F, Hanson J N, et al.Direct-write assembly of 3D hydrogel scaffolds for guided cell growth[J]. Adv Mater,2009,21(23):2407.
[12] Attinger D, Zhao Z, et al.An experimental study of molten microdroplet surface deposition and solidification: Transient beha-vior and wetting angle dynamics[J]. J Heat Transfer,2000,122(3):544.
[13] Fromm J.Numerical calculation of the fluid dynamics of drop-on-demand jets[J]. IBM J Res Development,1984, 28(3):322.
[14] Maruo S, Nakamura O, Kawata S.Three-dimensional microfa brication with two-photon-absorbed photopoly merization[J]. Optics Lett,1997,22(2):132.
[15] El-Kady M F, Strong V, Dubin S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science,2012,335(6074):1326.
[16] Ahn B Y, Lorang D J, Duoss E B, et al.Direct-write assembly of microperiodic planar and spanning ITO microelectrodes[J]. Chem Commun,2010,46(38):7118.
[17] Nathan-Walleser T, Lazar I-M, Fabritius M, et al.3D micro-extrusion of graphene-based active electrodes: Towards high-rate AC line filtering performance electrochemical capacitors[J]. Adv Funct Mater,2014,24(29):4706.
[18] Zhu C, Han T Y J, et al. Highly compressible 3D pe-riodic graphene aerogel microlattices[J]. Nat Commun,2015,6:6962.
[19] Zhu C, Liu T, Qian F, et al.Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores[J]. Nano Lett,2016,16(6):3448.
[20] Ahn B Y, Duoss E B, Motala M J, et al.Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes[J].Scie-nce,2009,323(5921):1590.
[21] Adams J J, Duoss E B, Malkowski T F, et al.Conformal printing of electrically small antennas on three-dimensional surfaces[J]. Adv Mater,2011,23(11):1335.
[22] Chen P, Fu Y, Aminirad R, et al.Fully printed separated carbon nanotube thin film transistor circuits and its application in organic light emitting diode control[J]. Nano Lett,2011,11(12):5301.
[23] Vatani M, Engeberg E D, Choi J W.Conformal direct-print of piezoresistive polymer/nanocomposites for compliant multi-layer tactile sensors[J]. Additive Manuf,2015,7:73.
[24] Boley J W, White E L, et al.Direct writing of gallium-indium alloy for stretchable electronics[J]. Adv Funct Mater,2014,24:3501.
[25] Sun K, et al.3D printing of interdigitated Li-ion microbattery architectures[J]. Adv Mater, 2013,25(33):4539.
[26] Fu K, Wang Y, et al.Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries[J]. Adv Mater,2016,28(13):2587.
[27] Kong Y L, Tamargo I A, Kim H, et al.3D printed quantum dot light-emitting diodes[J]. Nano Lett,2014,14(12): 7017.
[28] Sirringhaus H, Kawase T, et al.High-resolution inkjet printing of all-polymer transistor circuits[J]. Science, 2000,290:2123.
[29] Wang J, Gu J, et al.Low-cost fabrication of submicron all polymer field effect transistors[J]. Appl Phys Lett,2006,88(13):133502.
[30] Sele C W, von Werne T, Friend R H, et al. Lithography-free, self-aligned inkjet printing with sub-hundred-nanometer resolution[J]. Adv Mater,2005,17(8):997.
[31] Li J, Zhao Y, Tan H S, et al.A stable solution-processed polymer semiconductor with record high-mobility for printed transistors[J]. Sci Rep,2012,2:754.
[32] Tekin E, Smith P J, Hoeppener S, et al.Inkjet printing of luminescent CdTe nanocrystal-polymer composites[J]. Adv Funct Mater,2007,17(1):23.
[33] Wood V, Panzer M J, Chen J, et al.Inkjet-printed quantum dot-poly-mer composites for full-color AC-driven displays[J]. Adv Mater,2009,21(21):2151.
[34] Gorter H, Coenen M, Slaats M, et al.Toward inkjet printing of small molecule organic light emitting diodes[J]. Thin Solid Films,2013,532:11.
[35] Xu Y, Hennig I, et al.Inkjet-printed energy storage device using graphene/polyaniline inks[J]. J Power Sources,2014,248:483.
[36] Xu B B, et al.Laser patterning of conductive gold micronanostructures from nanodots[J]. Nanoscale,2012,4(22):6955.
[37] Seo B H, Youn J, Shim M.Direct Laser writing of air-stable p-n junctions in graphene[J]. ACS Nano,2014,8(9):8831.
[38] Zhang Y, Guo L, Wei S, et al.Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction[J]. Nano Today,2010,5(1):15.
[39] Gao W, Singh N, Song L, et al.Direct laser writing of micro-supercapacitors on hydrated graphite oxide films[J]. Nat Nanotechnol,2011,6(8):496.
[40] Zhou Y, Bao Q, et al.Microstructuring of graphene oxide nanosheets using direct laser writing[J]. Adv Mater,2010,22(1):67.
[41] Rapp L, Diallo A K, et al.Pulsed-laser printing of organic thin-film transistors[J]. Appl Phys Lett, 2009,95(17):171109.
[42] Shaw S J, Lippert T, Nagel M, et al.Red-green-blue polymer light-emitting diode pixels printed by optimized laser-induced forward transfer[J]. Appl Phys Lett,2012,100(20):203303.
[43] Nam W, Mitchell J I, et al.Laser direct writing of silicon field effect transistor sensors[J]. Appl Phys Lett,2013,102(9):093504.
[1] 马香钰, 夏广波, 邱琳琳, 董丽卡, 丁明乐, 杜平凡. 纤维及织物基柔性可穿戴器件研究进展[J]. 材料导报, 2020, 34(Z1): 490-497.
[2] 黄海亮, 陈跃良, 张勇, 卞贵学, 王晨光, 吴省均. 飞机多金属耦合在溶液状态与大气状态下的腐蚀行为对比及当量折算研究[J]. 材料导报, 2020, 34(4): 4118-4125.
[3] 安世崇,黄茜,陈沛润,张力,赵颖,张晓丹. 半透明钙钛矿及叠层太阳电池中的透明电极研究综述[J]. 材料导报, 2020, 34(3): 3069-3079.
[4] 邢宝林, 鲍倜傲, 李旭升, 史长亮, 郭晖, 王振帅, 侯磊, 张传祥, 岳志航. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068.
[5] 罗国平, 张漫虹, 梁铨斌, 陈冬, 陈星源, 李天乐, 朱伟玲. 射频功率和工作压强对Ga、Al共掺杂ZnO薄膜性能的影响[J]. 材料导报, 2020, 34(12): 12020-12024.
[6] 任瑞丽, 王会才, 高丰, 岳瑞瑞, 汪振文. 石墨烯基柔性超级电容器复合电极材料的研究进展[J]. 材料导报, 2020, 34(11): 11099-11105.
[7] 杨丹,刘妍,钟正祥,田宫伟,樊文倩,王宇,齐殿鹏. 植入式神经微电极[J]. 材料导报, 2020, 34(1): 1107-1113.
[8] 刘建伟,王嘉楠,朱蕾,延卫. 柔性锂硫电池材料:综述[J]. 材料导报, 2020, 34(1): 1155-1168.
[9] 李一帆,刘宇航,孙晋蒙,吴乾鑫,龚昕,杜洪方,艾伟,黄维. 柔性储能器件的电极设计研究进展[J]. 材料导报, 2020, 34(1): 1177-1186.
[10] 李寒, 孙志鹏, 贾殿赠. 柔性钛箔上生长的自支撑TiO2@NiCo2S4阵列复合材料用作高性能非对称超级电容器电极[J]. 材料导报, 2020, 34(1): 1187-1194.
[11] 李志航, 宁洪龙, 李晓庆, 陶瑞强, 刘贤哲, 蔡炜, 陈建秋, 王磊, 姚日晖, 彭俊彪. 基于多成核机制的银纳米线制备研究[J]. 材料导报, 2019, 33(z1): 303-306.
[12] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[13] 卜红梅, 李肖蔚, 齐建涛, 李焰. 利用微电极阵列技术研究合金的腐蚀[J]. 材料导报, 2019, 33(23): 3963-3970.
[14] 黄柯,赵阳,张昌松,王晓明,常青,邱六,关雪飞. PREP法制备球形CuAl10Fe3铜合金粉末的性能表征[J]. 材料导报, 2019, 33(22): 3783-3788.
[15] 李灵桐, 臧晓蓓, 曹宁. 锌锰二次电池研究进展[J]. 材料导报, 2019, 33(19): 3210-3218.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed