Please wait a minute...
材料导报  2024, Vol. 38 Issue (10): 22100121-10    https://doi.org/10.11896/cldb.22100121
  高分子与聚合物基复合材料 |
微孔发泡材料成型装置及其可视化研究进展
许家杰1, 钟金成2, 陈麒2,3, 杨鑫2, 龚维1,2,3,*
1 贵州师范大学机械与电气工程学院,贵阳 550025
2 贵州师范大学材料与建筑工程学院,贵阳 550025
3 贵州师范大学数学科学学院,贵阳 550025
Research Progress of Microcellular Foam Molding Device and Its Visualization
XU Jiajie1, ZHONG Jincheng2, CHEN Qi2,3, YANG Xin2, GONG Wei1,2,3,*
1 School of Mechanical and Electrical Engineering, Guizhou Normal University, Guiyang 550025, China
2 School of Materials and Construction Engineering, Guizhou Normal University, Guiyang 550025, China
3 School of Mathematical Sciences, Guizhou Normal University, Guiyang 550025, China
下载:  全 文 ( PDF ) ( 14857KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微孔发泡材料成型装置对微孔发泡材料的制备及基础研究至关重要。微孔发泡材料成型装置的设计与创新直接关系到发泡制品质量的改善、生产效率的提高以及微孔发泡相关基础研究。根据成型方式的不同,微孔发泡材料成型装置主要分为四类,即间歇发泡成型、连续挤出发泡成型、注塑发泡成型、模压发泡成型装置,分别阐述了各类装置设计原理和结构特点,并总结了几种发泡装置的优点和不足;同时总结了各种可视化装置设计方案,与挤出、注塑发泡成型方式下的可视化装置相比,自由发泡可视化装置结构较简单、成本较低廉、操作较简便,目前研究和应用居多;但是,存在与发泡环境相差很大的问题,很难用于实际生产。最后展望了当前微孔发泡材料成型装置设计中亟需解决的问题,并提出了今后微孔发泡材料成型装置的设计思路及研究前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许家杰
钟金成
陈麒
杨鑫
龚维
关键词:  微孔发泡  高分子材料成型  装置设计  可视化    
Abstract: Microcellular foam molding devices are crucial for fundamental research and preparation of microcellular foam materials. The design and innovation of these devices are directly related to fundamental research on microcellular foaming, as well as improved foam product quality and enhanced production efficiency. There are four main types of molding devices for microcellular foam materials based on the molding methods:batch foam molding, continuous extrusion foam molding, injection foam molding and compression foam molding devices. In this review, we explain the design principles and structural characteristics, present the advantages and disadvantages of different foam molding devices, and summarize the designs of various visualization devices. Free-foaming visualization devices have a simpler structure, lower cost, and are easier to operate compared to visualization devices based on extrusion and injection foam molding methods. Thus, they are currently the most studied and applied devices. However, there is a significant difference between the foaming environment and the conditions during actual production, making it challenging for practical applications. Finally, this paper reviews the current issues to be addressed in designing microcellular foaming material molding devices and proposes design ideas and research prospects of the microcellular foaming material molding devices.
Key words:  microcellular foaming    polymer material molding    device design    visualization
出版日期:  2024-05-25      发布日期:  2024-05-28
ZTFLH:  TP23  
基金资助: 国家自然科学基金(52063008);贵州省自然科学基金(ZK[2021]050);贵州省百层次人才资助项目([2016]5673)
通讯作者:  *龚维,贵州师范大学材料与建筑工程学院教授(二级)、博士研究生导师。1998年6月于原贵州工业大学材料学,获学士学位;2005年6月于贵州大学材料学,获硕士学位;2011年6月于重庆大学材料科学与工程,获博士学位。目前主要从事高分子材料结构与性能方面的研究工作,累计以第一作者或通信作者发表论文95篇,其中SCI、EI检索73篇,申请专利16件,授权发明7件,实用新型专利6件。gongw@gznu.edu.cn   
作者简介:  许家杰,2020年6月毕业于南华大学,获得工学学士学位。现为贵州师范大学机械与电气工程学院硕士研究生,在龚维教授的指导下进行研究。目前主要研究领域为成型装置设计。
引用本文:    
许家杰, 钟金成, 陈麒, 杨鑫, 龚维. 微孔发泡材料成型装置及其可视化研究进展[J]. 材料导报, 2024, 38(10): 22100121-10.
XU Jiajie, ZHONG Jincheng, CHEN Qi, YANG Xin, GONG Wei. Research Progress of Microcellular Foam Molding Device and Its Visualization. Materials Reports, 2024, 38(10): 22100121-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100121  或          http://www.mater-rep.com/CN/Y2024/V38/I10/22100121
1 Banerjee R, Ray S S. Macromolecular Materials and Engineering, 2020, 305, 2000366.
2 Jiang T H. Microcellular foaming process devicedesign and study on the foaming process. Master’s Thesis, Guizhou University, China, 2009 (in Chinese).
蒋团辉. 微发泡过程装置设计及过程研究. 硕士学位论文, 贵州大学, 2009.
3 Chen P P. Supercritical CO2 mold foaming to prepare polyamide 6 foam and research on the mechanical properties. Master’s Thesis, East China University of Science and Technology, China, 2021 (in Chinese).
陈鹏鹏. 超临界CO2模压发泡制备PA6发泡材料及其力学性能的研究. 硕士学位论文, 华东理工大学, 2021.
4 Zhang F. Characterization and regulation of the injection foaming process of the polymer. Master’s Thesis, Guizhou University, China, 2020 (in Chinese).
张飞. 聚合物注塑发泡过程的调控与表征. 硕士学位论文, 贵州大学, 2020.
5 Cao X M, Hang Z S, Ying S J. Materials Reports, 2012, 26(11), 69 (in Chinese).
曹晓苗, 杭祖圣, 应三九. 材料导报, 2012, 26(11), 69.
6 Singh I, Gandhi A. Journal of Macromolecular Science Part A, DOI:10.1080/10601325.2019.1704178.
7 Guo Q P, Wang J, Park C B, et al. Industrial & Engineering Chemistry Research, 2006, 45, 6153.
8 Xu X, Park C B, Xu D L, et al. Polymer Engineering and Science, 2003, 43, 1378.
9 Tammaro D, Contaldi V, Carbone M P, et al. Journal of Cellular Plastics, 2016, 52, 533.
10 Marrazzo C, Di Maio E, Iannace S, et al. Journal of Cellular Plastics, 2008, 44, 37.
11 宁波格林美孚新材料科技有限公司. 中国专利, CN104708754B, 2018.
12 宁波格林美孚新材料科技有限公司. 中国专利, CN204523621U, 2015.
13 山东大学. 中国专利, CN109571847B, 2019.
14 Wang M Y, Xie L S, Qian B, et al. Journal of Applied Polymer Science, DOI:10.1002/app.44094.
15 Xiong P, Huang X Y, Liu H S, et al. Polymer Materials Science and Engineering, 2015, 31(12), 104 (in Chinese).
熊鹏, 黄兴元, 柳和生, 等. 高分子材料科学与工程, 2015, 31(12), 104.
16 Kaewmesri W, Lee P C, Park C B, et al. Journal of Cellular Plastics, 2006, 42, 405.
17 Nagata T, Tanigaki M, Ohshima M. Polymer Engineering and Science, 2000, 40, 1843.
18 天华化工机械及自动化研究设计院有限公司. 中国专利, CN104325615A, 2015.
19 四川大学. 中国专利, CN109760333B, 2021.
20 安徽卓畅新材料有限公司. 中国专利, CN109338141B, 2020.
21 Kichatov B V, Korshunov A M. Polymer Engineering and Science, 2013, 54, 96.
22 Kargar M, Behravesh A H, Mohammad-Taheri H. Polymer Composites, 2014, 37, 1674.
23 Ma W L. Study on the mechanism and equipment of TPU foaming particles prepared by supercritical carbon dioxide. Master’s Thesis, Qingdao University of Science and Technology, China, 2017 (in Chinese).
马文良. 基于超临界CO2制备TPU发泡颗粒的机理及设备研究. 硕士学位论文, 青岛科技大学, 2017.
24 Peng X F, Liu T, Lan Q G, et al. Materials Reports, 2005, 19(1), 75 (in Chinese).
彭响方, 刘婷, 兰庆贵, 等. 材料导报, 2005, 19(1), 75.
25 Zhao S H, Zhang L Y, Mao L X. Polymer processing engineering, China Light Industry Press, China, 2006, pp. 219 (in Chinese).
赵素合, 张丽叶, 毛立新. 聚合物加工工程, 中国轻工业出版社, 2006, pp. 219.
26 贵州省材料产业技术研究院. 中国专利, CN203622749U, 2014.
27 Yanfeng Automotive Trim Systems Co., Ltd. U. S. patent, US9126358, 2015.
28 宁波高新区卓尔化工科技有限公司. 中国专利, CN113352534A, 2021.
29 鸿安(福建)机械有限公司等. 中国专利, CN113183390A, 2021.
30 Wu S K. The forming board method of compression molding and its theoretical research. Master’s Thesis, Beijing University of Chemical Technology, China, 2016 (in Chinese).
吴申康. 模压发泡板材成型方法及其理论研究. 硕士学位论文, 北京化工大学, 2016.
31 南京工业大学. 中国专利, CN216182148U, 2022.
32 浙江海铂新材料科技有限公司. 中国专利, CN203371718U, 2014.
33 浙江巨络化学有限责任公司. 中国专利, CN205674421U, 2016.
34 广州市欧橡隔热材料有限公司. 中国专利, CN207059046U, 2018.
35 山东大学, 福建鑫瑞新材料科技有限公司. 中国专利, CN112976457A, 2021.
36 北京化工大学. 中国专利, CN103895146A, 2014.
37 Gong W, Zhang C, Yu J, et al. Wuhan University Journal of Natural Sciences, 2014, 19, 123.
38 Pan L Y, Shen Y X, Zhan M S, et al. Polymer Composites, 2008, 31, 43.
39 Wong A, Park C B. Polymer Testing, 2012, 31, 417.
40 Wong A, Guo Y T, Park C B. The Journal of Supercritical Fluids, 2013, 79, 142.
41 Wong A, Guo Y T, Park C B, et al. International Journal of Molecular Sciences, 2015, 16, 9196.
42 Chen J. Investigation of solubility and diffusivity of CO2 in polypropylene composites and their application in the simulation of CO2 foaming injection molding process. Master’s Thesis, East China University of Science and Technology, China, 2013 (in Chinese).
陈洁. CO2在聚丙烯复合材料中溶解和扩散行为及其在注塑发泡模拟中的应用. 硕士学位论文, 华东理工大学, 2013.
43 Deng R, Jiang T H, Zhang C, et al. Polymers, 2021, 13, 1468.
44 Huang Q, Wei K, Xia H D, et al. Thermochimica Acta, 2021, 703, 179014.
45 Tabatabaei A, Barzegari M R, Nofar M, et al. Polymer Testing, 2014, 33, 57.
46 Peng X F, Liu L Y, Chen B Y, et al. Polymer Testing, 2016, 52, 225.
47 Ahmadzai A, Behravesh A H, Sarabi M T, et al. Journal of Cellular Plastics, 2014, 50, 279.
48 Shaayegan V, Mark L H, Tabatabaei A, et al. Express Polymer Letters, 2016, 10, 462.
49 Shaayegan V, Ameli A, Wang S, et al. Composites Part A: Applied Science and Manufacturing, 2016, 88, 67.
[1] 范存霞, 谷雨, 邱星晨, 李长明, 郭春显. 基于石墨烯/氯化血红素复合物纳米酶可视化检测谷胱甘肽[J]. 材料导报, 2023, 37(2): 22030004-8.
[2] 陈如冰, 胡永琴, 陈美珠, 安佳, 吕颖, 刘玉菲, 李东玲. 基于过氧化氢酶介导金纳米颗粒交联聚集的乙肝表面抗原可视化检测[J]. 材料导报, 2022, 36(5): 21020098-4.
[3] 张梦梦, 刘梦, 杨丽丽, 葛邓腾. 液晶材料在智能光学器件中的应用研究进展[J]. 材料导报, 2022, 36(18): 21040006-9.
[4] 李京菁, 侯赤. 机织复合材料渐进损伤的可视化方法[J]. 材料导报, 2022, 36(13): 20110130-9.
[5] 张恒, 周玉惠, 张飞, 龚维, 何力. 聚丙烯/β-环糊精复合材料发泡性能及力学性能的研究[J]. 材料导报, 2020, 34(4): 4148-4152.
[6] 王明, 李星. 超临界二氧化碳技术制备的聚丙烯/三元乙丙橡胶开孔发泡材料的吸油行为[J]. 《材料导报》期刊社, 2018, 32(8): 1236-1240.
[7] 应建行, 刘智峰, 贺登峰, 陈忠仁. LLDPE/EPDM共混物的超临界CO2微孔发泡研究[J]. 《材料导报》期刊社, 2018, 32(4): 616-620.
[8] 朱晔, 魏世丞, 梁义, 王玉江, 郭蕾, 刘文超. 可视化无损检测技术研究进展*[J]. 《材料导报》期刊社, 2017, 31(3): 63-69.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed