Please wait a minute...
材料导报  2022, Vol. 36 Issue (18): 21040104-5    https://doi.org/10.11896/cldb.21040104
  金属与金属基复合材料 |
双丝单弧气保焊熔滴过渡及焊缝成形
李志勇1,2, 李朋2, 胡广龙2, 张光先1,2,*
1 山东大学控制科学与工程学院,济南 250101
2 山东奥太电气有限公司,济南 250101
Metal Droplet Transition and Welding Formation of Twin-wire Single-arc Gas Shielded Welding
LI Zhiyong1,2, LI Peng2, HU Guanglong2, ZHANG Guangxian1,2,*
1 College of Control Science and Engineering, Shandong University, Jinan 250101, China
2 Shandong Aotai Electric Co., Ltd.,Jinan 250101, China
下载:  全 文 ( PDF ) ( 3424KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 双丝单弧气保焊是一种新型熔化极焊接方法,系统由单电源、单送丝机构和单焊枪组成,双丝共用一个具有两孔的导电嘴,单电源通过导电嘴同时向双丝输出电流形成单个电弧,双丝末端熔滴相互吸引形成共熔滴并稳定过渡到熔池。采用高速摄像、信息同步采集及焊接电源等装备,开发双丝单弧气保焊熔滴过渡试验系统,研究了不同焊接电流参数对熔滴大小、过渡行为及焊缝形貌的影响,并阐明了双丝单弧气保焊熔滴过渡机理。结果表明:随着焊接电流的增大,熔滴过渡形式依次为多脉一滴、一脉一滴、射流过渡和潜弧射流过渡四种模式,过渡频率逐渐增大,熔滴体积逐渐减小。焊缝形貌研究表明,随着焊接电流增大,焊缝熔深逐渐增大,熔宽先增大后减小,当焊接电流为570 A时,焊缝截面成形质量最佳,此时熔敷速度为15.8 kg/h。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李志勇
李朋
胡广龙
张光先
关键词:  双丝单弧气保焊  焊接电流  熔滴过渡  焊缝成形    
Abstract: Twin-wire single-arc gas shielded welding is a newly developed melting electrode welding method. The system consists of a single power source, a single wire feeding mechanism, a single welding torch. The twin wires share the contact tip with two holes, and the single power source supplies the twin wires simultaneously through the contact tip. The output current of the twin wires forms a single arc, and the droplets at the ends of the twin wires interact each other, forming a co-melt droplet and stably translating to the molten pool. Using the high-speed camera, information synchronization acquisition equipment and welding power source, a twin-wire single-arc gas shielded welding droplet transfer testing system is developed. The influences of welding current on the droplet size, transition behavior and weld morphology were investigated, and the droplet transfer mechanism of twin-wire single-arc gas shielded welding is elucidated. The results show that with the increasing of welding current, the transition frequency gradually increases and the droplet volume gradually decreases, so that the transition behavior of the molten droplet changes in four modes, which are multi-pulse one drop transition, one pulse one drop transition, spray transition and buried arc with spray transition. The weld morphology investigation shows that as the welding current increases, the weld penetration depth gradually increases, and the melting width firstly increases and then decreases. The best weld formation is obtained at the welding current of 570 A, and the correspon-ding deposition rate achieves 15.8 kg/h.
Key words:  twin-wire single-arc gas shielded welding    welding current    droplet transfer    welding formation
收稿日期:  2202-09-25      出版日期:  2022-09-25      发布日期:  2022-09-26
ZTFLH:  TG444  
基金资助: 国家重点研发计划 (2017YFB1103204);山东省重点研发计划(2020CXGC010207)
通讯作者:  *gxzhang@sdu.edu.cn   
作者简介:  李志勇,2014年6月、2016年6月毕业于哈尔滨工业大学,分别获得工学学士、硕士学位。2017年3月在山东奥太电气有限公司工作至今,主要从事高效焊接方法的研究工作,在国内外权威期刊发表论文10余篇。张光先,1986年7月、1990年7月及2004年7月分别获得山东大学工学学士、工学硕士与工学博士学位,现任山东大学教授、博士研究生导师。任山东奥太电气有限公司总经理、现代焊接装备国家地方联合工程实验室主任、“电力电子节能技术与装备”教育部工程研究中心副主任、山东省现代焊接装备工程技术研究中心主任。曾获国家科技进步二等奖2项;荣获中国焊接设备行业卓越奉献奖。主要成果:国家级、省部级科技攻关课题与横向课题30余项,在国内外权威期刊发表论文50余篇,出版专著1部,获国家授权专利120余项。主要研究方向为先进焊接电源、焊接控制方法及智能焊接云技术等。
引用本文:    
李志勇, 李朋, 胡广龙, 张光先. 双丝单弧气保焊熔滴过渡及焊缝成形[J]. 材料导报, 2022, 36(18): 21040104-5.
LI Zhiyong, LI Peng, HU Guanglong, ZHANG Guangxian. Metal Droplet Transition and Welding Formation of Twin-wire Single-arc Gas Shielded Welding. Materials Reports, 2022, 36(18): 21040104-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040104  或          http://www.mater-rep.com/CN/Y2022/V36/I18/21040104
1 Fan D, Yang W Y, Xiao L. Materials Reports B: Research Papers, 2019, 33(8), 2729(in Chinese).
樊丁, 杨文艳, 肖磊. 材料导报:研究篇, 2019, 33(8), 2729.
2 Sun Y J, Chang Y L.Materials Reports A:Review Papers, 2020, 34(11), 21155(in Chinese).
孙雅杰, 常云龙. 材料导报:综述篇, 2020, 34(11), 21155.
3 Cai X Y, Fan C L, Lin S B, et al. International Journal of Advanced Manufacturing Technology, 2017, 91(9-12), 3449.
4 Shi C W, Zou Y, Zou Z D, et al. Chinese Journal of Mechanical Engineering, 2015, 28(1), 123.
5 Zheng J, Wang T Q, Zhong P, et al. China Welding, 2019, 28(1), 1.
6 Liu L M, Zhou Y B. China Welding, 2019, 28(4), 8.
7 Shi Gan, Zhu Ming, Huang Jiankang, et al. Transactions of the China Welding Institution, 2012, 33(3), 17(in Chinese).
石玕, 朱明, 黄健康, 等. 焊接学报, 2012, 33(3), 17.
8 Wu D T. Study of arc characters in twin-wire indirect arc welding. Master's Thesis, Shandong University, China, 2010(in Chinese).
吴东亭. 双丝间接电弧焊电弧特性研究. 硕士学位论文, 山东大学, 2010.
9 Zhang L, Su S, Wang J, et al. Journal of Manufacturing Processes, 2019, 37, 124.
10 Xu Chen, Hua Xueming, Ye Dingjian, et al. Spectroscopy and Spectral Analysis, 2018, 38(7), 7(in Chinese).
徐琛, 华学明, 叶定剑, 等. 光谱学与光谱分析, 2018, 38(7), 7.
11 Wang Fei, Hua Xueming, Ma Xiaoli, et al. Transactions of the China Welding Institution, 2011, 32(7), 109(in Chinese).
王飞, 华学明, 马晓丽, 等. 焊接学报, 2011, 32(7), 109.
12 Zheng Jia, Wang Tianqi, Hou Yiangqiang, et al. Welding & Joining, 2018(6), 15(in Chinese).
郑佳, 王天琪, 侯仰强, 等. 焊接, 2018(6), 15.
[1] 韩善果, 杨永强, 罗子艺, 蔡得涛, 郑世达. 线能量对铝/钢双光束激光焊接接头组织及性能的影响[J]. 材料导报, 2021, 35(2): 2109-2114.
[2] 陈涛, 薛松柏, 孙子建, 翟培卓, 陈卫中, 郭佩佩. CO2气体保护焊短路过渡控制技术的研究现状与展望[J]. 材料导报, 2019, 33(9): 1431-1442.
[3] 浦娟, 谢依汝, 胡庆贤, 胥国祥, 朱蔡琛. 单缆式焊丝GMAW电弧物理行为的数值模拟[J]. 材料导报, 2019, 33(4): 689-693.
[4] 罗子艺, 韩善果, 陈永城, 蔡得涛, 哈斯金·弗拉基斯拉夫. 工艺参数对激光-电弧复合焊缝成形及拉伸性能的影响[J]. 材料导报, 2019, 33(13): 2146-2150.
[5] 黄勇,赵文强,张利尧. 粉末熔池耦合活性TIG焊接方法[J]. 材料导报编辑部, 2017, 31(22): 70-74.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed