Please wait a minute...
材料导报  2021, Vol. 35 Issue (16): 16201-16210    https://doi.org/10.11896/cldb.20070274
  高分子与聚合物基复合材料 |
超临界二氧化碳/乙醇共发泡法制备聚醚酰亚胺泡沫制品
王博1, 冯东1,2
1 昆明理工大学化学工程学院,昆明 650500;
2 四川大学高分子材料工程国家重点实验室,四川大学高分子研究所,成都 610065
Preparation of Poly(ether-imide) Foam Parts by Supercritical Carbon Dioxide/Ethanol Co-foaming Method
WANG Bo1, FENG Dong1,2
1 Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China;
2 State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
下载:  全 文 ( PDF ) ( 16403KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用一步泄压釜压发泡技术研究了聚醚酰亚胺(PEI)的超临界二氧化碳(scCO2)发泡行为,系统研究了饱和压力、发泡温度和泄压速率对PEI泡孔结构的影响,进一步引入共发泡剂和成核剂来分别改善PEI的发泡性能和优化泡孔结构。通过釜压发泡熔接技术,在受限金属模具空腔中同时完成PEI珠粒的发泡与熔接,制备了发泡倍率及泡孔结构可调的PEI泡沫制品。结果表明,以scCO2作发泡剂,发泡条件较为苛刻且所得PEI泡沫具有微孔结构,但整体发泡倍率小于3倍;加入共发泡剂如四氢呋喃(THF)和乙醇(EtOH)等可明显改善PEI的发泡性能、提升发泡倍率,引入碳纳米管(CNTs)作成核剂可显著优化泡孔结构、提高材料成核数量和泡孔密度;通过釜压发泡熔接制备的PEI及PEI/CNTs泡沫制品珠粒熔接质量良好,力学性能优良,PEI泡沫制品的拉伸强度和压缩强度分别为5.7 MPa和5.6 MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王博
冯东
关键词:  聚醚酰亚胺  釜压发泡  超临界二氧化碳  共发泡剂  泡沫制品    
Abstract: In this paper, the foaming behaviors of poly(ether-imide) (PEI) in supercritical carbon dioxide (scCO2) were studied by depressurization batch foaming method. The effects of saturation pressure, foaming temperature and depressurization rate on PEI foam structure were systematically studied. Co-blowing agents and nucleating agent were further introduced to enhance the foaming ability and optimize the foam structures. PEI beads were foamed and fused simultaneously in the confined stainless mould to obtain PEI foamed parts with adjustable expansion ratio and cellular structure. The results indicated that the expansion ratio of PEI by using scCO2 as foaming agent were less than 3 fold, due to the harsh foaming conditions; the introduction of co-blowing agents such as tetrahydrofuran (THF) and ethanol (EtOH) was very helpful to improve the foaming ability and increase the expansion ratio, the nucleation number and cell density could be further enhanced by using carbon nanotubes (CNTs) as nucleating agent. The PEI and PEI/CNTs foam parts obtained from co-foaming method featured fine inter-bead bonding qualities and exhibited excellent mechanical performance, the tensile strength and compression strength of the PEI foam were 5.7 MPa and 5.6 MPa, respectively.
Key words:  poly(ether-imide)    batch foaming    supercritical CO2    co-foaming agents    foam parts
                    发布日期:  2021-09-07
ZTFLH:  TQ328  
基金资助: 国家自然科学基金(51720105012)
通讯作者:  fdryan@163.com   
作者简介:  王博,2020年9月就读于昆明理工大学,目前为化学工程学院一年级研究生,主要从事高分子材料高性能化与多功能化方面的研究。
冯东,昆明理工大学化学工程学院讲师,硕士研究生导师。2020年6月毕业于四川大学高分子材料工程国家重点实验室,高分子科学与工程专业工学博士学位。同年加入昆明理工大学化学工程学院工作,主要从事高性能高分子微孔发泡与加工成型方面的科研工作,重点研究功能高分子复合材料与结构复合材料的设计与制备。以第一作者或通讯作者身份发表SCI、EI论文20余篇,申请发明专利3项。
引用本文:    
王博, 冯东. 超临界二氧化碳/乙醇共发泡法制备聚醚酰亚胺泡沫制品[J]. 材料导报, 2021, 35(16): 16201-16210.
WANG Bo, FENG Dong. Preparation of Poly(ether-imide) Foam Parts by Supercritical Carbon Dioxide/Ethanol Co-foaming Method. Materials Reports, 2021, 35(16): 16201-16210.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070274  或          http://www.mater-rep.com/CN/Y2021/V35/I16/16201
1 Liu P S. Introduction to porous materials, 2nd Ed,Tsinghua University Press, China, 2012(in Chinese).
刘培生. 多孔材料引论,第 2 版, 清华大学出版社, 2012.
2 Suh K W, Park C P, Maurer M J, et al. Advanced Materials, 2000, 12(23), 1779.
3 David L T, Li H B, Liu D H, et al. Industrial & Engineering Chemistry Research, 2003, 42(25), 6431.
4 叶林,孙雪洁,赵晓文. 中国专利,CN107556750A, 2017.
5 National Bureau of Statistics, PRC. Output and growth rate of plastics industry in 2017, China, 2017(in Chinese).
中华人民共和国国家统计局. 2017年塑料制品行业产量与增速,2017.
6 Chang J F, Yu X, Zhang X K, et al. Plastic Technology, 2018, 46(5), 62(in Chinese).
常健飞, 于翔, 张湘科, 等.塑料科技, 2018, 46(5), 62.
7 Krause B, Diekmann K, van der V A F A, et al. Macromolecules, 2002, 35(5), 1738.
8 Krause B, Mettinkhof R, van der V N F A, et al. Macromolecules, 2001, 34(4), 874.
9 Miller D, Kumar V. Polymer, 2011, 52(13), 2910.
10 Aher B, Olson N M, Kumar V. Journal of Materials Research, 2013, 28(17), 2366.
11 Zhai W, Feng W, Ling J, et al. Industrial & Engineering Chemistry Research, 2012, 51(39), 12827.
12 Sun H, Sur G S, Mark J E. European Polymer Journal, 2002, 38(12), 2373.
13 Krause B, Boerrigter M, van der V N F A, et al. Journal of Membrane Science, 2001, 187(1-2), 181.
14 Li Z, Jia Y, Bai S. RSC Advances, 2018, 8(6), 2880.
15 Jia Y B. Study on poly (vinyl alcohol) and supercritical carbon dioxide thermal foaming and foam's cellular structure and properties. Ph.D. Thesis, Sichuan University, China, 2017(in Chinese).
贾迎宾. 聚乙烯醇超临界二氧化碳热塑挤出发泡及泡沫材料结构性能的研究. 博士学位论文,四川大学, 2017.
16 Liu P J, Chen W H, Jia Y B, et al. Polymers for Advanced Technologies, 2017, 28(3), 285.
17 Ma Z L, Zhang G C, Yang Q, et al. Journal of Cellular Plastics, 2015, 51(3), 307.
18 Jia Y B, Bai S B, Park C B,et al. Industrial & Engineering Chemistry Research, 2017, 56(23), 6655.
19 Gendron R, Champagne M F, Delaviz Y, et al. Journal of Cellular Plastics, 2006, 42(2), 127.
20 Luo Y W, Xin C L, Sun J, et al. Advanced Materials Research, 2013, 748, 112.
21 Salerno A, Fanovich M A. The Journal of Supercritical Fluids, 2014, 95, 394.
22 Hu D D, Gu Y, Liu T, et al. The Journal of Supercritical Fluids, 2018, 140, 21.
23 Liu P J. Study on preparation and mechanism of polyvinyl alcohol bead foams. Ph.D. Thesis, Sichuan University, China, 2018(in Chinese).
刘鹏举. 聚乙烯醇珠粒发泡材料的制备及机理研究. 博士学位论文, 四川大学,2018.
24 Liu P, Chen W, Bai S, et al. Composites Part A: Applied Science and Manufacturing, 2018, 107, 675.
25 Yu H, Lei Y, Yu X, et al. Journal of Applied Polymer Science, 2015, 132(30), 42325.
26 Chen L, Ozisik R, Schadler L S. Polymer, 2010, 51(11),2368.
[1] 白央, 徐成成, 赵洋, 张荣, 刘清亭, 付旭东, 胡圣飞. 超临界流体制备氮化硼纳米片的研究进展[J]. 材料导报, 2021, 35(7): 7071-7076.
[2] 吴志昂, 郑晓平, 龚莉雯, 王璠, 杨子程, 张利, 包锦标. 发泡工艺及超临界二氧化碳诱导结晶作用对聚碳酸酯发泡行为的影响[J]. 材料导报, 2020, 34(8): 8200-8204.
[3] 龚莉雯, 郑晓平, 吴志昂, 王璠, 杨子程, 张利, 包锦标. 微孔发泡聚碳酸酯-聚烯烃弹性体共混物[J]. 材料导报, 2020, 34(10): 10197-10200.
[4] 王景昌, 赵宇, 苗宏雨, 赵启成, 詹世平. 超临界二氧化碳辅助制备β-环糊精-药物包合物的研究进展[J]. 材料导报, 2019, 33(Z2): 542-546.
[5] 温变英, 段磊. PEI/Ni梯度电磁屏蔽薄膜材料耐腐蚀性研究[J]. 材料导报, 2019, 33(6): 1065-1069.
[6] 郑晓平, 王璠, 吴志昂, 龚莉雯, 包锦标, 王市伟. 聚甲基丙烯酸甲酯纳米发泡材料的制备:胶束尺寸对发泡行为的影响[J]. 材料导报, 2019, 33(4): 709-713.
[7] 杨晨光, 赵全, 张茂江, 邢哲, 吴国忠. 聚四氟乙烯微粉对超临界CO2发泡聚丙烯泡孔结构及性能的改善[J]. 材料导报, 2019, 33(21): 3547-3551.
[8] 余鹏, 项佩, 高金玲, 李媛. 基于相形态结构的PLA/PBS共混物微孔发泡行为[J]. 材料导报, 2019, 33(20): 3524-3530.
[9] 黄辉, 韩健峰, 王奕顺, 夏阳, 张俊, 甘永平, 梁初, 张文魁. 富锂锰表面超临界CO2辅助包覆磷酸锰锂及其电化学性能[J]. 材料导报, 2018, 32(23): 4072-4078.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed