Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21080095-11    https://doi.org/10.11896/cldb. 21080095
  无机非金属及其复合材料 |
花瓣状纳米硫和球状纳米硫的制备及性能
崔春娟1,2,*, 赵亚男1, 刘跃1, 武重洋1, 张凯1, 王妍1, 魏剑1
1 西安建筑科技大学冶金工程学院,西安 710055
2 陕西省冶金工程技术研究中心,西安 710055
Preparation and Properties of Petal-shaped Nano-sulfur and Spherical Nano-sulfur
CUI Chunjuan1,2,*, ZHAO Yanan1, LIU Yue1, WU Chongyang1, ZHANG Kai1, WANG Yan1, WEI Jian1
1 School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 Shaanxi Metallurgical Engineering Technology Research Center, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 29666KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂硫电池因能量密度高、环境友好,被认为是最有希望的新一代能源储存装置。但是,多硫化物穿梭效应和体积膨胀等问题是锂硫电池目前所面临的巨大挑战。通过化学合成法制备了不同形貌且具有稳定规则结构的纳米硫,为电池在充放电过程中提供更多的活性位点,有效减少正极活性物质的损失,使电池的电化学性能得到提升。结果表明,花瓣状纳米硫材料在0.1C的电流密度下有740.72 mAh/g的初始容量,100次循环后容量保持在362.07 mAh/g;球状纳米硫材料在0.1C的电流密度下初始容量为825.30 mAh/g,100次循环后容量保持在418.06 mAh/g,每圈的容量衰减率仅为0.493%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔春娟
赵亚男
刘跃
武重洋
张凯
王妍
魏剑
关键词:  锂硫电池  正极材料  花瓣状纳米硫  球状纳米硫  放电比容量    
Abstract: Lithium-sulfur batteries are considered as the most promising new generation of energy storage devices because of high energy density and environmental friendliness. However, the problems of polysulfide shuttle effect and volume expansion are the current challenges for Li-S batteries. In this work, nano-sulfur with different morphology and stable regular structure were prepared by chemical synthesis method. The aim of this work is to provide more active sites for batteries in the process of charge and discharge, to reduce the loss of active substances in the positive electrode effectively, to improve the electrochemical performance of batteries. The results showed that the flower-S exhibited an initial capacity of 740.72 mAh/g after 100 cycles at 0.1C and capacity remained at 362.07 mAh/g. The sphere-S exhibited an initial capacity of 825.30 mAh/g after 100 cycles at 0.1C and capacity remained at 418.06 mAh/g, the capacity attenuation rate was only 0.493% per cycle.
Key words:  lithium-sulfur battery    cathode material    flower-S    sphere-S    discharge specific capacity
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  TM912  
基金资助: 国家自然科学基金(51201121);陕西省国际科技合作与交流计划项目(2016KW-055);陕西省重点研发计划重点产业创新链(群)资助项目(2019ZDLGY04-04);山西省科技重大专项项目(20191102006)
通讯作者:  *崔春娟,西安建筑科技大学冶金工程学院教授、博士研究生导师。2002—2008年在西北工业大学材料加工工程专业取得硕士和博士学位,2013—2014年在美国肯塔基大学的化学与材料做访问学者。发表期刊论文50余篇,其中30余篇被SCI收录。合作出版著作《金属凝固理论及应用技术》一部,研究方向为复合材料的组织与性能。cuichunjuan@xauat.edu.cn   
引用本文:    
崔春娟, 赵亚男, 刘跃, 武重洋, 张凯, 王妍, 魏剑. 花瓣状纳米硫和球状纳米硫的制备及性能[J]. 材料导报, 2023, 37(5): 21080095-11.
CUI Chunjuan, ZHAO Yanan, LIU Yue, WU Chongyang, ZHANG Kai, WANG Yan, WEI Jian. Preparation and Properties of Petal-shaped Nano-sulfur and Spherical Nano-sulfur. Materials Reports, 2023, 37(5): 21080095-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb. 21080095  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21080095
1 Rajkumar P, Diwakar K, Radhika G, et al. Vacuum, 2019, 161, 37.
2 Hu Z Q, Xie K. Materials Reports A:Review Papers, 2011, 25(9), 46(in Chinese).
胡宗倩, 谢凯. 材料导报:综述篇, 2011, 25(9), 46.
3 Yi H, Lan T, Yang Y, et al. Energy Storage Materials, 2019, 21, 61.
4 Zhang Y B, Yan Y, Xie J C, et al. New Journal of Chemistry, 2018, 42(4), 2483.
5 Gu S, Jin J, Lu Y, et al. Energy Storage Science and Technology, 2017, 6(5), 1026(in Chinese).
谷穗, 靳俊, 卢洋, 等. 储能科学与技术, 2017, 6(5), 1026.
6 Miao L X, Wang W K, Wang M J, et al. Progress in Chemistry, 2013, 25(11), 1867(in Chinese).
苗力孝, 王维坤, 王梦佳, 等. 化学进展, 2013, 25(11), 1867.
7 Li F, Zhou G, Pei S, et al. Advanced Materials, 2014, 26(4), 625.
8 Yuan W, Qiu Z, Wang C, et al. Chemical Engineering Journal, 2020, 381, 122648.
9 Yang R, Du H, Lin Z, et al. Carbon, 2019, 141, 258.
10 Liu J, Wang M, Xu N, et al. Energy Storage Materials, 2018, 15, 53.
11 Razzaq A A, Yao Y, Shah R, et al. Energy Storage Materials, 2019, 16, 194.
12 Judez X, Zhang H, Li C, et al. Journal of the Electrochemical Society, 2018, 165(1), A6008.
13 Wang F, Liang X, Chen M, et al. Functional Materials Letters, 2018, 11(6), 2.
14 Tian C, Wu J, Ma Z, et al. Beilstein Journal of Nanotechnology, 2019, 10, 2251.
15 Gu X X, Yang Z G, Qiao S, et al. Rare Metals, 2021, 40(3), 529.
16 Han X R, Guo X T, Xu M J, et al. Rare Metals, 2020, 39(9), 1099.
17 Shen J D, Xu X J, Liu J, et al. ACS Nano, 2019, 13(8), 8986.
18 Wang Z S, Shen J D, Liu J, et al. Advanced Materials, 2019, 31(33), 1.
19 Shen J D, Xu X J, Liu J, et al. Advanced Energy Materials, 2021, 11(26), 1.
20 Zuo J H, Gong Y J. Tungsten, 2020, 2(2), 134.
21 Gu X X, Deng L, Ren X L. Frontiers in Energy Research, 2021, 9, 626596.
22 Gu X X, Lai C. Energy Storage Materials, 2019, 23, 190.
23 Wang Z S, Xu X J, Ji S, M, et al. Journal of Materials Science and Technology, 2020, 55, 56.
24 Wei J, Chen B, Su H, et al. Ceramics International, 2021, 47(2), 2686.
25 Ji X, Lee K T, Nazar L F. Nature Materials, 2009, 8(6), 500.
26 Deng C, Wang Z, Wang S, et al. Journal of Materials Chemistry A, 2019, 7(20), 12381.
27 Lim W G, Kim S, Jo C, et al. Angewandte Chemie-International Edition, 2019, 58(52), 18746.
28 Wei J, Chen B, Su H, et al. Ceramics International, 2021, 47(8), 10965.
[1] 虞亚霖, 莫岩, 陈永, 李德. LiNO3-LiOH熔盐法制备单晶LiNi0.75Co0.10Mn0.15O2正极材料[J]. 材料导报, 2023, 37(4): 21050208-6.
[2] 宋丽红, 张敏刚, 曹翔宇, 郭锦, 闫晓燕. S-N掺杂聚乙二醇用于锂硫电池的第一性原理研究[J]. 材料导报, 2023, 37(3): 21030173-5.
[3] 张琴, 胡耀波, 王润, 王俊. 镁离子电池正极材料的研究现状[J]. 材料导报, 2022, 36(7): 20050125-11.
[4] 赵文文, 王韵芳, 段东红, 刘世斌, 周娴娴, 陈良. 金属有机骨架衍生的层状Co3O4/C在锂硫电池中的应用[J]. 材料导报, 2022, 36(6): 20120257-7.
[5] 曹鹏飞, 刘雅婷, 陈妮, 汤文静, 李福枝, 夏勇, 孙翱魁. 水系锌离子电池正极材料的研究进展[J]. 材料导报, 2022, 36(23): 21010239-13.
[6] 魏士俊, 何润合, 李永兵, 靳艳梅, 张兴祥. 聚丙烯腈分子量对锂硫电池比容量和循环稳定性的影响[J]. 材料导报, 2022, 36(22): 21080285-6.
[7] 胡坤, 郭锦, 张敏刚, 连晋毅, 张怡轩, 李占龙. 金属化合物在锂硫电池正极材料及夹层中的应用[J]. 材料导报, 2022, 36(19): 21010010-11.
[8] 张苗, 魏志祥, 常晶晶. 柔性锂硫电池电极材料的结构设计[J]. 材料导报, 2022, 36(11): 21010030-11.
[9] 冯阳, 汪港, 陈君妍, 康卫民, 邓南平, 程博闻. 高性能锂硫电池研究进展与改进策略[J]. 材料导报, 2022, 36(11): 20080027-14.
[10] 郝娴, 梁峰, 李红霞, 曹云波, 王晓函, 张海军. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 1-8.
[11] 贾政刚, 张学习, 钱明芳, 耿林, 熊岳平. 全固态锂硫电池中界面问题的研究现状[J]. 材料导报, 2021, 35(9): 9097-9107.
[12] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[13] 李晓丹, 胡心雨, 刘小平, 刘小清, 申渝, 唐莹, 冯佳成. 苯并噁嗪树脂的研究新进展:智能化应用及能源、环境领域应用[J]. 材料导报, 2021, 35(3): 3209-3218.
[14] 汪仕杰, 肖慧, 任玉荣, 黄小兵, 王海燕. Na3V2(PO4)3/CN/rGO复合正极材料的构筑及储钠性能研究[J]. 材料导报, 2021, 35(24): 24006-24010.
[15] 李欢, 何妍妍, 周国伟. 普鲁士蓝及普鲁士蓝类化合物材料在钠离子电池中的研究进展[J]. 材料导报, 2021, 35(23): 23050-23056.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed