Preparation and Properties of Petal-shaped Nano-sulfur and Spherical Nano-sulfur
CUI Chunjuan1,2,*, ZHAO Yanan1, LIU Yue1, WU Chongyang1, ZHANG Kai1, WANG Yan1, WEI Jian1
1 School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China 2 Shaanxi Metallurgical Engineering Technology Research Center, Xi'an 710055, China
Abstract: Lithium-sulfur batteries are considered as the most promising new generation of energy storage devices because of high energy density and environmental friendliness. However, the problems of polysulfide shuttle effect and volume expansion are the current challenges for Li-S batteries. In this work, nano-sulfur with different morphology and stable regular structure were prepared by chemical synthesis method. The aim of this work is to provide more active sites for batteries in the process of charge and discharge, to reduce the loss of active substances in the positive electrode effectively, to improve the electrochemical performance of batteries. The results showed that the flower-S exhibited an initial capacity of 740.72 mAh/g after 100 cycles at 0.1C and capacity remained at 362.07 mAh/g. The sphere-S exhibited an initial capacity of 825.30 mAh/g after 100 cycles at 0.1C and capacity remained at 418.06 mAh/g, the capacity attenuation rate was only 0.493% per cycle.
1 Rajkumar P, Diwakar K, Radhika G, et al. Vacuum, 2019, 161, 37. 2 Hu Z Q, Xie K. Materials Reports A:Review Papers, 2011, 25(9), 46(in Chinese). 胡宗倩, 谢凯. 材料导报:综述篇, 2011, 25(9), 46. 3 Yi H, Lan T, Yang Y, et al. Energy Storage Materials, 2019, 21, 61. 4 Zhang Y B, Yan Y, Xie J C, et al. New Journal of Chemistry, 2018, 42(4), 2483. 5 Gu S, Jin J, Lu Y, et al. Energy Storage Science and Technology, 2017, 6(5), 1026(in Chinese). 谷穗, 靳俊, 卢洋, 等. 储能科学与技术, 2017, 6(5), 1026. 6 Miao L X, Wang W K, Wang M J, et al. Progress in Chemistry, 2013, 25(11), 1867(in Chinese). 苗力孝, 王维坤, 王梦佳, 等. 化学进展, 2013, 25(11), 1867. 7 Li F, Zhou G, Pei S, et al. Advanced Materials, 2014, 26(4), 625. 8 Yuan W, Qiu Z, Wang C, et al. Chemical Engineering Journal, 2020, 381, 122648. 9 Yang R, Du H, Lin Z, et al. Carbon, 2019, 141, 258. 10 Liu J, Wang M, Xu N, et al. Energy Storage Materials, 2018, 15, 53. 11 Razzaq A A, Yao Y, Shah R, et al. Energy Storage Materials, 2019, 16, 194. 12 Judez X, Zhang H, Li C, et al. Journal of the Electrochemical Society, 2018, 165(1), A6008. 13 Wang F, Liang X, Chen M, et al. Functional Materials Letters, 2018, 11(6), 2. 14 Tian C, Wu J, Ma Z, et al. Beilstein Journal of Nanotechnology, 2019, 10, 2251. 15 Gu X X, Yang Z G, Qiao S, et al. Rare Metals, 2021, 40(3), 529. 16 Han X R, Guo X T, Xu M J, et al. Rare Metals, 2020, 39(9), 1099. 17 Shen J D, Xu X J, Liu J, et al. ACS Nano, 2019, 13(8), 8986. 18 Wang Z S, Shen J D, Liu J, et al. Advanced Materials, 2019, 31(33), 1. 19 Shen J D, Xu X J, Liu J, et al. Advanced Energy Materials, 2021, 11(26), 1. 20 Zuo J H, Gong Y J. Tungsten, 2020, 2(2), 134. 21 Gu X X, Deng L, Ren X L. Frontiers in Energy Research, 2021, 9, 626596. 22 Gu X X, Lai C. Energy Storage Materials, 2019, 23, 190. 23 Wang Z S, Xu X J, Ji S, M, et al. Journal of Materials Science and Technology, 2020, 55, 56. 24 Wei J, Chen B, Su H, et al. Ceramics International, 2021, 47(2), 2686. 25 Ji X, Lee K T, Nazar L F. Nature Materials, 2009, 8(6), 500. 26 Deng C, Wang Z, Wang S, et al. Journal of Materials Chemistry A, 2019, 7(20), 12381. 27 Lim W G, Kim S, Jo C, et al. Angewandte Chemie-International Edition, 2019, 58(52), 18746. 28 Wei J, Chen B, Su H, et al. Ceramics International, 2021, 47(8), 10965.