Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1612-1617    https://doi.org/10.11896/j.issn.1005-023X.2018.10.008
  材料研究 |
中间退火及成品退火速率对高压阳极铝箔微观组织的影响
王运雷1,张 杰2,龚丽娟3
1 重庆文理学院材料与化工学院,重庆 402160;
2 重庆文理学院机电工程学院,重庆 402160;
3 重庆文理学院安全管理处,重庆 402160
Effect of Inter-annealing and Final-annealing Heating Rate on Microstructure of Aluminum Foils for High-voltage Anode
WANG Yunlei1, ZHANG Jie2, GONG Lijuan3
1 School of Materials and Chemical Engineering, Chongqing University of Arts and Sciences, Chongqing 402160;
2 School of Mechanical and Electrical Engineering, Chongqing University of Arts and Sciences, Chongqing 402160;
3 Security Department, Chongqing University of Arts and Sciences, Chongqing 402160
下载:  全 文 ( PDF ) ( 7720KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用不同中间退火温度及成品退火速率对高压阳极铝箔进行处理,并利用EBSD及XRD技术分析其微观组织结构,尤其是织构的变化规律。结果表明,中间退火温度对后续成品退火中形成立方织构起到了关键作用,这可能是由于低温中间退火保留了大量的形变储能,为成品退火时立方织构的形成增加了形核核心。同时,低的中间退火温度造成立方织构较理想位置偏转程度更大。随着成品退火加热速率的增大,铝箔再结晶分数及再结晶晶粒尺寸逐渐减小,这是由于退火加热速率的增大(低于临界加热速率),缩短了晶界迁移的时间,减缓了再结晶的发生。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王运雷
张 杰
龚丽娟
关键词:  中间退火  高纯铝箔  退火加热速率  微观组织  织构    
Abstract: The effect of the inter-annealing temperature and heating rate of final annealing on the microstructure of high-vol-tage anode aluminum foils was investigated by electron back scattered diffraction (EBSD) and X-ray diffraction (XRD). The results demonstrated that the inter-annealing temperature played a key role on the formation of cube texture in the final products, because the low inter-annealing retained lots of deformation stored energy and provided great driving force for the nucleation. Simultaneously, the cube texture deflected dramatically from the idea position at a lower inter-annealing temperature. With the increase of annealing heating rate during final annealing, the fraction and grain size of recrystallization decreased gradually, because a higher annealing heating rate (below the critical heating rate) reduced the time available for grain boundary migration and retarded the recrystallization.
Key words:  inter-annealing    high purity aluminum foil    annealing heating rate    microstructure    texture
出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TG146  
基金资助: 校级项目资助(Y2013JD46)
作者简介:  王运雷:男,1985年生,博士,讲师,主要研究方向为铝及铝合金形变加工及微观机理 E-mail:wangyunlei@cqu.edu.cn
引用本文:    
王运雷,张 杰,龚丽娟. 中间退火及成品退火速率对高压阳极铝箔微观组织的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1612-1617.
WANG Yunlei, ZHANG Jie, GONG Lijuan. Effect of Inter-annealing and Final-annealing Heating Rate on Microstructure of Aluminum Foils for High-voltage Anode. Materials Reports, 2018, 32(10): 1612-1617.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.008  或          https://www.mater-rep.com/CN/Y2018/V32/I10/1612
1 Yang H, Mao W M. Present research status and technology deve-lopment of aluminum foil for electrolytic capacitor [J]. Materials Review,2005,19(9):1(in Chinese).
杨宏,毛卫民.铝电解电容器铝箔的研究现状和技术发展[J].材料导报,2005,19(9):1.
2 Sun Z Y, Xu Y L, Cao W Z, et al. Effect of recrystal granularity of high-purity aluminum foil on it’s specific capacitance [J]. Electron Component Materials,1995,14(4):45(in Chinese).
孙中禹,徐友龙,曹婉真,等.高纯铝箔再结晶晶粒度对比容的影响[J].电子元件与材料,1995,14(4):45.
3 Engler O, Huh M Y. Evolution of the cube texture in high purity aluminum capacitor foils by continuous recrystallization and subsequent grain growth [J]. Materials Science and Engineering A,1999,271:371.
4 Huang G J, Zhang Jing, Wang Y L, et al. Abnormal recrystallization behavior of high purity aluminum foil[C]∥13th International Conference on Aluminum Alloys (ICAA-13).Pennsylvania, US,2012.
5 Li N K, Ye S F. Effect of process factors on the cube texture of high purity aluminum foils [J]. Light Alloy Processing Technology,1993,21(11):19(in Chinese).
李念奎,叶淑芬.工艺因素对高纯铝箔立方织构的影响[J].轻合金加工技术,1993,21(11):19.
6 Li N K. A process to improve the cube texture of high purity aluminum foils [J]. Light Alloy Processing Technology,1995,23(4):18(in Chinese).
李念奎.提高高纯铝箔立方织构的工艺途径[J].轻合金加工技术,1995,23(4):18.
7 Xu J, Mao W M, Feng H P, et al. Influence of Cu content on the recrystallization texture of aluminum foil for high voltage anode electrolytic capacitor [J]. Journal of University of Science and Technology Beijing,2002,24(2):133(in Chinese).
徐进,毛卫民,冯慧平,等.Cu对高压电解电容器阳极铝箔再结晶织构的影响[J].北京科技大学学报,2002,24(2):133.
8 Zhang X M, Meng Y, Zhou Z P. Effect of Fe impurity on recrystallization textures and specific capacitances of high pure aluminum foils [J]. The Chinese Journal of Nonferrous Metals,1999,9(1):19(in Chinese).
张新明,孟亚,周卓平.Fe杂质对高纯铝箔再结晶织构及比电容的影响[J].中国有色金属学报,1999,9(1):19.
9 Liu C M, Zhang X M, Zhou H Z, et al. Influence of trace Fe and annealing on recrystallization textures of high-purity aluminum foils [J]. Heat Treatment of Metals,2002,27(3):21(in Chinese).
刘楚明,张新明,周鸿章,等.铁含量及退火对高纯铝箔再结晶织构的影响[J].金属热处理,2002,27(3):21.
10 Xiao Y Q, Zhang X M, Jin L. Effect of microstructures in electrolytic capacitor Al foils on specific capacitance [J]. Materials Review,2003,17(6):80(in Chinese).
肖亚庆,张新明,靳丽.微观组织对电解电容器铝箔比电容的影响[J].材料导报,2003,17(6):80.
11 Xu J, Mao W M, Feng H P, et al. Influence of annealing process on cube texture formation in aluminum foil of high voltage anode electrolytic capacitor [J]. The Chinese Journal of Nonferrous Metals,2001,11(S2):42(in Chinese).
徐进,毛卫民,冯慧平,等.退火加热过程对高压电解电容器阳极铝箔立方织构的影响[J].中国有色金属学报,2001,11(S2):42.
12 Liu C M, Zhang X M, Chen Z Y, et al. Effect of intermediate annealing on cubic texture of high-purity aluminum foils [J]. Heat Treatment of Metals,2001,26(3):28(in Chinese).
刘楚明,张新明,陈志永,等.中间退火对高纯铝箔立方织构的影响[J].金属热处理,2001,26(3):28.
13 Attallah M M, Strangwood M, Davis C L. Influence of the heating rate on the initiation of primary recrystallization in a deformed Al-Mg alloy [J]. Scripta Materialia,2010,63:371.
14 Ma Y X, Yang P, Yu Y N, et al. Micro-process of cube texture formation in high purity electronic aluminum foils [J]. Journal of University of Science and Technology Beijing,2003,25(2):147(in Chinese).
马英晓,杨平,余永宁,等.高纯电子铝箔立方织构形成的微观过程[J].北京科技大学学报,2003,25(2):147.
15 Liu C M, Zhang X M, Zhang Z Y, et al. Effect of production procedure of aluminum anode foils on cube texture [J]. Materials Review,2000,14(6):19(in Chinese).
刘楚明,张新明,张志永,等.高压阳极电容铝箔生产工艺对立方织构的影响[J].材料导报,2000,14(6):19.
16 Zhao S L, Zheng Z Q. The effect of cold deformation and annealing on the cube texture of Al foil [J]. Journal of Wuhan University of Technology,2001,23(6):31(in Chinese).
赵素玲,郑子樵.退火和冷轧变形对电容铝箔立方织构的影响[J].武汉理工大学学报,2001,23(6):31.
17 Liu C M, Zhang X M, Zhou H Z, et al. Effect of multi-stage annealing on recrystallization textures of high purity aluminum foils [J]. Heat Treatment of Metals,2001,26(9):38(in Chinese).
刘楚明,张新明,周鸿章,等.分级退火对高纯铝箔再结晶织构的影响[J].金属热处理,2001,26(9):38.
[1] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[2] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[3] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[4] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[5] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[6] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[7] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[8] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[9] 李娜, 丁西安, 王永强, 陆勤阳, 郑成思. Cu对含Ce高强高效无取向硅钢磁性能的影响[J]. 材料导报, 2024, 38(6): 22100266-7.
[10] 朱轩,杨晓益, 陆鑫, 杨书汉. 电弧脉冲对6005A-T6铝合金CMT-P焊接接头组织和性能的影响[J]. 材料导报, 2024, 38(23): 23090035-7.
[11] 王沛锦, 卓家乐, 艾桃桃, 董洪峰. L12型纳米有序相析出强化(FeNiCoCr)93Al5Ti2高熵合金[J]. 材料导报, 2024, 38(22): 23110207-5.
[12] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[13] 郭伟玲, 邢志国, 李鹏, 马国政, 王海斗. 冷喷涂铜基复合涂层及后处理技术的研究现状[J]. 材料导报, 2024, 38(19): 23010049-13.
[14] 杨贵荣, 宋文明, 许可, 马颖. CeO2对WC/Ni复合熔覆层微观组织与性能的影响[J]. 材料导报, 2024, 38(19): 23070014-7.
[15] 郭晖, 曹晓卿, 孙逸舟, 林鹏, 刘亚玲, 李培友. 轻质高熵合金微观组织及力学性能研究进展[J]. 材料导报, 2024, 38(18): 23020177-10.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed