Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 24090090-9    https://doi.org/10.11896/cldb.24090090
  无机非金属及其复合材料 |
基于多目标粒子群算法的Π型风冷BTMS结构参数优化
杨涵1, 刘宁豪1, 高强1,*, 程金鹏2, 杨广丰1
1 长安大学汽车学院,西安 710018
2 江铃汽车股份有限公司,南昌 330052
MOPSO-based Optimization Design of the Structural Parameters of Π-type Air-cooled BTMS
YANG Han1, LIU Ninghao1, GAO Qiang1,*, CHENG Jinpeng2, YANG Guangfeng1
1 School of Automobile, Chang'an University, Xi'an 710018, China
2 Jiangling Motors Corporation, Ltd, Nanchang 330052, China
下载:  全 文 ( PDF ) ( 32115KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 风冷电池热管理技术具有结构简单、成本低、能耗低等优点,常用于电动汽车锂离子电池的温度控制。然而,风冷技术也存在冷却能力差、电池温度均匀性不佳等明显缺点。本工作设计了一种新的Π型风冷电池热管理系统(BTMS),通过数值模拟比较了Π型和Z型风冷BTMS的冷却性能。研究结果显示,相较于Z型风冷BTMS,Π型风冷BTMS能够实现更均匀的内部空气流场,从而降低电池组的最高温度和最大温差。为进一步提升其冷却性能,研究了进风口高度、进风口宽度和出风口位置等结构参数对Π型风冷BTMS性能的影响,并建立了这些参数与电池组最高温度、最大温差以及平均温度的函数关系。采用多目标粒子群优化(MOPSO)算法对各结构参数进行优化,首次使用Critic权重法选取了最优解,改善了其他研究在选取最优解时受主观影响较大的缺陷。研究结果表明,优化后的结构参数显著改善了Π型风冷BTMS的冷却性能,电池组最高温度降低11.11%,最大温差降低50.74%,平均温度降低7.41%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨涵
刘宁豪
高强
程金鹏
杨广丰
关键词:  锂离子电池  Π型风冷BTMS  MOPSO  帕累托前沿  Critic权重法    
Abstract: Air-cooled thermal management technology has been widely employed for regulating the temperature of lithium-ion batteries in electric vehicles due to its simplicity, cost-effectiveness, and low energy consumption. However, conventional air-cooled systems suffer limitations such as inadequate cooling capacity and uneven temperature distribution within battery packs. This work made an effort in designing a novel Π-type air-cooled battery thermal management system (BTMS) and comparing its cooling performance with the conventional Z-type system through numerical simulations. Results indicated that the Π-type BTMS could achieve a more uniform internal airflow, thereby reducing both the maximum temperature and temperature differentials across the battery pack compared to the Z-type system. Furthermore it entailed an investigation on the inf-luence of structural parameters such as inlet height, inlet width, and outlet position on the Π-type BTMS performance. Functional relationships between these parameters and key thermal metrics were established. Leveraging the multi-objective particle swarm optimization (MOPSO) algorithm, all the relevant parameters were optimized, and the optimal solution was selected by innovatively using the Critic weight method, addressing subjective biases inherent in previous studies. The optimized structural parameters notably enhanced the Π-type BTMS cooling performance, including the reductions in maximum battery pack temperature, temperature differentials, and average temperature by 11.11%, 50.74%, and 7.41%, respectively.
Key words:  lithium-ion battery    Π-type air-cooled BTMS    MOPSO    Pareto front    Critic weighting method
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  TM911  
基金资助: 国家自然科学基金(51878066)
通讯作者:  * 高强,博士,长安大学汽车学院教授、硕士研究生导师。目前主要从事智能汽车、智能物流和电池管理等方面的研究工作。gaoqiang@chd.edu.cn   
作者简介:  杨涵,长安大学汽车学院硕士研究生,在高强教授的指导下在电池热管理领域开展研究。
引用本文:    
杨涵, 刘宁豪, 高强, 程金鹏, 杨广丰. 基于多目标粒子群算法的Π型风冷BTMS结构参数优化[J]. 材料导报, 2026, 40(1): 24090090-9.
YANG Han. MOPSO-based Optimization Design of the Structural Parameters of Π-type Air-cooled BTMS. Materials Reports, 2026, 40(1): 24090090-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090090  或          https://www.mater-rep.com/CN/Y2026/V40/I1/24090090
1 Xu Y, Zhang H, Xu X, et al. International Journal of Heat and Mass Transfer, 2021, 176, 121380.
2 Li H, Xiao X, Wang Y, et al. Applied Thermal Engineering, 2020, 180, 115795.
3 Etacheri V, Marom R, Elazari R, et al. Energy & Environmental Science, 2011, 4(9), 3243.
4 Ping P, Kong D, Zhang J, et al. Journal of Power Sources, 2018, 398, 55.
5 Said A O, Lee C, Stoliarov S I, et al. Applied Energy, 2019, 248, 415.
6 Chen S, Peng X, Bao N, et al. Applied Thermal Engineering, 2019, 156, 324.
7 Liang J, Gan Y, Li Y. Energy Conversion and Management, 2018, 155, 1.
8 Chen K, Wang S F. Journal of Engineering Thermophysics, 2018, 39(5), 1092 (in Chinese).
陈凯, 汪双凤. 工程热物理学报, 2018, 39(5), 1092.
9 Chen K, Wang S F. Journal of Engineering Thermophysics, 2018, 39(2), 384 (in Chinese).
陈凯, 汪双凤. 工程热物理学报, 2018, 39(2), 384.
10 Liu H, Gao X, Zhao J, et al. Renewable Energy, 2022, 199, 640.
11 Guo R, Li L. International Journal of Heat and Mass Transfer, 2022, 189, 122706.
12 Ma J, Duan Z Y, Sun Y F, et al. Chinese Journal of Electrical Engineering, 2023, 43(17), 6737 (in Chinese).
马菁, 段志勇, 孙勇飞, 等. 中国电机工程学报, 2023, 43(17), 6737.
13 Al-Abidi AA, Mat S, Sopian K, et al. International Journal of Heat and Mass Transfer, 2013, 61, 684.
14 Li J, Zhang H. International Journal of Heat and Mass Transfer, 2020, 156, 119820.
15 Fan X, Meng C, Yang Y, et al. Journal of Energy Storage, 2023, 72, 108239.
16 Shi H, Liu M, Li Y, et al. Applied Thermal Engineering, 2023, 223, 119991.
17 Chen K, Wu W, Yuan F, et al. Energy, 2019, 167, 781.
18 Xie J, Ge Z, Zang M, et al. Applied Thermal Engineering, 2017, 126, 583.
19 Hong S, Zhang X, Chen K, et al. International Journal of Heat and Mass Transfer, 2018, 116, 1204.
20 Zhang S B, He X, Long N C, et al. Applied Thermal Engineering, 2023, 221, 119825.
21 Lu Z, Yu X, Wei L, et al. Applied Thermal Engineering, 2018, 136, 28.
22 Bernardi D, Pawlikowski E, Newman J. Journal of the Electrochemical Society, 1985, 132(1), 5.
23 Feng X H, Li Z Z, Gu F S, et al. Journal of Energy Storage, 2024, 86, 111202.
24 Zhang S B. Structural design and optimization of lithium-ion power battery thermal management system based on air cooling. Master's Thesis, Chang'an University, China, 2023 (in Chinese).
张顺博. 基于风冷的锂离子动力电池热管理系统结构设计和优化. 硕士学位论文, 长安大学, 2023.
25 Yang H, Liu N H, Gao Q, et al. Materials Reports, 2025, 39(15), 24070051 (in Chinese).
杨涵, 刘宁豪, 高强, 等. 材料导报, 2025, 39(15), 24070051.
[1] 姚洁丽, 伍小波, 刘紫鹏, 唐繁荣, 廖常平. 锂离子电池负极极片干燥开裂机理与影响因素研究综述[J]. 材料导报, 2025, 39(9): 24070200-7.
[2] 苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
[3] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[4] 张凯铭, 李春雨, 孙洪茹, 韩梓健, 张旭, 魏爽, 路旭格, 董伟, 沈丁, 杨绍斌. 硼掺杂石墨烯作为锂离子电池负极材料的第一性原理计算研究[J]. 材料导报, 2025, 39(24): 24120040-9.
[5] 贾向东, 罗展, 镐昆明, 张洪耀, 陆伟. 基于响应面法和MOPSO算法的2195-T6铝锂合金GTN损伤模型[J]. 材料导报, 2025, 39(23): 24120146-8.
[6] 付举, 马星阳, 谢雯娜, 吕鹏飞, 智茂永. 锂离子电池硅基负极膨胀机理及改性研究进展[J]. 材料导报, 2025, 39(18): 24070028-8.
[7] 杨涵, 刘宁豪, 高强, 何轩, 杨广丰. 基于NSGA-Ⅱ的双迷宫流道液冷板结构优化设计[J]. 材料导报, 2025, 39(15): 24070051-7.
[8] 张笑儒, 宋静, 罗来马, 孙宏骞, 赵聪聪, 田硕, 田亮亮, 吴玉程. 固态锂离子电池电解质材料应用性能的研究进展[J]. 材料导报, 2025, 39(13): 24060166-20.
[9] 张玲玲, 郏永强, 顾星宸, 张子豪, 巴志新. 锂离子电池正极集流体用涂碳铝箔的研究进展[J]. 材料导报, 2025, 39(12): 24030022-6.
[10] 李龙飞, 郑永泉, 万旺军, 徐至宏, 汪清利, 王琛, 贺馨平, 夏新辉, 夏阳. 锂离子电池缺陷检测技术及失效机理分析研究进展[J]. 材料导报, 2025, 39(11): 24100016-9.
[11] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[12] 刘显茜, 曹军磊, 李文辉, 曾朴. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 22070040-6.
[13] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[14] 李东霖, 杨万亮, 曹锐, 杨雪, 徐梅松. 球型Si基碳包覆锂离子电池负极材料研究进展[J]. 材料导报, 2024, 38(21): 23020231-11.
[15] 郑永泉, 刘亚宁, 王国光, 张文魁, 颜旖旎, 董江群, 包大新, 夏阳. 高能量密度18650型锂离子电池制造生命周期评价[J]. 材料导报, 2024, 38(21): 23030169-7.
[1] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[2] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[3] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[4] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[5] LEI Hong, ZHANG Xinming, WANG Jiping. Heat Transfer Enhancement of Porous Foams and Analysis with Field Synergy Principle[J]. Materials Reports, 2018, 32(6): 1010 -1014 .
[6] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[7] GAO Yingli, DAI Kaiming, HUANG Liang, ZHENG Cece, XIN Tailei. Research and Application of Superhydrophobic and Anti-icing Technology in Highway Pavement[J]. Materials Reports, 2017, 31(1): 103 -109 .
[8] LIANG Yu, XIANG Song, LIANG Yilong, YANG Ming,
WEI Zemin, XIONG Hu, LI Jing. Effect of Prior Austenite Grain Size on Microstructure and Toughness of Pearlitic Steel[J]. Materials Reports, 2017, 31(2): 77 -81 .
[9] . Comparative Study of Self-lubricating Coatings Microstructure on TC4 Alloy Surface
Prepared by Single-pass Laser Cladding and Multitrack Laser Cladding
[J]. Materials Reports, 2017, 31(4): 47 -51 .
[10] ZHANG Shuo, YU Liyan. Capacitive Properties of In-situ Polymerized Polypyrrole/Graphene Composites Differed in Water-alcohol Ratios[J]. Materials Reports, 2017, 31(10): 32 -36 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed