Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24110026-10    https://doi.org/10.11896/cldb.24110026
  金属与金属基复合材料 |
自然时效Al-Cu系合金溶质原子团簇的研究进展
韩静怡, 张鹏*, 刘刚
西安交通大学材料科学与工程学院,西安 710049
Research Progress of Solute Atomic Clusters in Natural Aging Al-Cu Alloys
HAN Jingyi, ZHANG Peng*, LIU Gang
School of Materials Science and Engineering, Xi’an Jiaotong University, Xi ’an 710049, China
下载:  全 文 ( PDF ) ( 25521KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 人工时效是提高铝合金性能的有效方法,但固溶淬火时效等方法引入的热应力较大,并且存在淬透性等问题,因此工业上提出开发免热处理型铝合金,也就是利用自然时效对合金进行强化处理。自然时效强化可以减少热应力变形,同时省去部分热处理工序,具有降低制造成本、节能减排等优势。合金一般在自然时效阶段形成溶质原子簇,即纳米/亚纳米无序聚集区,由溶质原子在基体内形成。这种团簇强化机制可引起显著的强度提升以及良好的塑韧性,能有效抑制疲劳裂纹扩展,展现出优异的综合性能。近年来得益于三维原子探针、小角散射等表征技术的发展和逐渐完善,自然时效的团簇强韧化的研究逐渐深入。本文着重介绍了自然时效Al-Cu系合金近年来的研究进展,从Al-Cu-Li、Al-Cu-Sn、Al-Cu-Mg三种类型合金的强韧化、微观表征以及应用等多个方面进行了简要总结,同时也对合金自然时效领域未来可能的研究趋势与方向进行了深入的展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩静怡
张鹏
刘刚
关键词:  Al-Cu系  溶质原子团簇  自然时效  微观表征    
Abstract: Artificial aging is an effective way to improve the performance of aluminum alloy, but there are problems such as hardenability, large thermal stress introduced by solution quenching aging and other methods. So the development of heat-treatment-free aluminum alloy are proposed, that is, using natural aging to strengthen the alloy. Natural aging can reduce the thermal stress deformation, while eliminate part of the heat treatment process, which has the advantages of reducing manufacturing costs, energy saving and emission reduction. In the natural aging phase of alloys, solute atomic clusters are generally formed, that is, nanometer/subnanometer disordered aggregation regions formed by solute atoms in the matrix. Cluster strengthening can cause significant strengthening effect and plasticity toughness, and effectively resist fatigue crack propagation, showing excellent comprehensive properties. In recent years, thanks to the gradual improvement and development of three-dimensional atomic probes, small angle scattering and other characterization techniques, the study of natural aging cluster strengthening and toughening has been gradually deepened. In this paper, the research progress of natural aging Al-Cu alloys in recent years was summarized from the aspects of strengthening and toughening, microscopic characterization and application of Al-Cu-Li, Al-Cu-Sn and Al-Cu-Mg alloys, and the possible research directions in the future were prospected.
Key words:  Al-Cu series    solute atomic clusters    natural aging    microscopic characterization
发布日期:  2025-10-27
ZTFLH:  TG146.2  
基金资助: 国家重点研发计划(2023YFB3712704);国家自然科学基金(52271115)
通讯作者:  *张鹏,博士,西安交通大学大学材料科学与工程学院副教授、博士研究生导师。目前主要从事耐热铝合金新材料研发、铝合金团簇强韧化以及位错雪崩&统计物理&临界行为等方面的研究工作。zhangpeng.mse@xjtu.edu.cn   
作者简介:  韩静怡,西安交通大学材料科学与工程学院硕士研究生,在刘刚教授和张鹏副教授的指导下进行研究,目前主要研究领域为自然时效Al-Cu-Mg-(Ag)合金溶质团簇演化与低周疲劳行为。
引用本文:    
韩静怡, 张鹏, 刘刚. 自然时效Al-Cu系合金溶质原子团簇的研究进展[J]. 材料导报, 2025, 39(20): 24110026-10.
HAN Jingyi, ZHANG Peng, LIU Gang. Research Progress of Solute Atomic Clusters in Natural Aging Al-Cu Alloys. Materials Reports, 2025, 39(20): 24110026-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110026  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24110026
1 Ardell A J. Metallurgical and Materials Transactions A, 1985, 16, 2131.
2 Garrett G G, Knott J F. Metallurgical and Materials Transactions A, 1978, 9a, 1187.
3 Liu G, Zhang P, Yang C, et al. Acta Metallurgica Sinica, 2021, 57(11), 1484(in chinese).
刘刚, 张鹏, 杨冲, 等. 金属学报, 2021, 57(11), 1484.
4 Marlaud T, Deschamps A, Bley F, et al. Acta Metallurgica Sinica, 2010, 58(14), 4814.
5 Chen Y, Weyland M, Hutchinson C. Acta Metallurgica Sinica, 2013, 61(15), 5877.
6 Shi K K, Zhao X L, Zhang P, et al. Chinese Journal of NonFerrous Metals, 2020, 30(11), 2513(in Chinese).
史坤坤, 赵小龙, 张鹏, 等. 中国有色金属学报, 2020, 30(11), 2513.
7 Zhang P, Zhi K K, Bian J J, et al. Acta Metallurgica Sinica, 2021, 207, 116682.
8 Abd El-Aty A, Xu Y, Guo X Z, et al. Journal of Advanced Research, 2018, 10, 49.
9 Purnima B, Ripudaman S, Ranjan J S, et al. Journal of Alloys and Compounds, 2023, 964, 171343.
10 Dingding L, Ben L, Tianle L, et al. Journal of Materials Science & Technology, 2023, 148, 75.
11 Shuai C, Cunsheng Z, Mingfu l, et al. Materials Science & Engineering A, 2021, 814, 141125.
12 Deschamps A, Garcia M, Chevy J, et al. Acta Metallurgica Sinica, 2017, 122, 32.
13 Yoshimura R, Konno T, Abe E, et al. Acta Metallurgica Sinica, 2003, 51(10), 2891.
14 Liu C H, Zhou Y H, Ma P P, et al. Materials Characterization, 2023, 199, 112791.
15 Peng J, Bahl S, Shyam A, et al. Acta Metallurgica Sinica, 2020, 196, 747.
16 Peng J, Bahl S, Shyam a, et al. Acta Metallurgica Sinica, 2020, 196, 747.
17 Laure B, Yong Z, Zezhong Z, et al. Nature Communications, 2020, 11(1), 1248.
18 Wang X, Shao W, Jiang J, et al. Materials Science & Engineering a, 2020, 782, 139253.
19 Decreus B, Deschamps A, Geuser D F, et al. Acta Metallurgica Sinica, 2013, 61(6), 2207.
20 Ovri H, Jägle A E, Stark A, et al. Materials Science & Engineering A, 2015, 637, 162.
21 Gayle F W, Heubaum F H, Pickens J R. Scripta Metallurgica et Materialia, 1990, 24(1), 79.
22 Ivanov R, Deschamps A, Geuser D F. Acta Metallurgica Sinica, 2018, 157, 186.
23 Ivanov R, Deschamps A, Geuser D F. Journal of Applied Crystallography, 2017, 50, 1725.
24 Wu L, Chen Y, Li X, et al. Materials Science & Engineering A, 2019, 744, 581.
25 Ma P P, Zhan L H, Liu C H, et al. Journal of Alloys and Compounds, 2019, 790, 8.
26 Gong X P, Wu C L, Luo S F, et al. Acta Metallurgica Sinica, 2013, 59(11), 1428(in chinese).
巩向鹏, 伍翠兰, 罗世芳, 等. 金属学报, 2023, 59(11), 1428.
27 Ddeng X S, Liu Z Z, Zeng J G, et al. Journal of Materials Science & Technology, 2024, 192, 42.
28 Bourgeois L, Nie F J, Muddle C B. Philosophical Magazine, 2005, 85(29), 3487.
29 Ringer S P, Hono K, Sakurai T. Metallurgical and Materials Transactions A, 1995, 26(9), 2207.
30 Ringer S P, Hutchinson C R, Hono K, et al. Science reports of the Research Institutes, 1997, 44(2), 241.
31 Bourgeois L, Nie J F, Muddle B C. Materials Science Forum, 2002, 449(396), 789.
32 Bourgeois L, Wong T, Xiong X Y, et al. Materials Science Forum, 2006, 38(519), 495.
33 Honma T, Saxey W D, Ringer P S. Materials Science Forum, 2006, 519, 203.
34 Staab T E M, Lotter F, Mühle U, et al. Journal of Materials Science, 2021, 56, 8717.
35 Polmear I J. In:Materials Forum-Aluminium Alloys, Their Physical and Mechanical Properties. Australia, 2004, pp. 28.
36 Starink M, Gao N, Yan J. Materials Science & Engineering A, 2004, 387, 222.
37 Abis S, Massazza M, Mengucci P, et al. Scripta Materialia, 2001, 45(6), 685.
38 Starink M J, Gao N, Davin L, et al. Philosophical Magazine, 2005, 85(13), 1395.
39 Wang C S, Starink J M, Gao N. Materials Science Forum, 2007, 62(546), 775.
40 Khan I N, Starink M J, Sinclair I, et al. Materials Science and Technology, 2008, 24(12), 1411.
41 Urena A, Otero E, Utrilla M V, et al. Journal of Materials Processing Tech, 2006, 182(1), 624.
42 Zurob H, Seyedrezai H. Scripta Materialia, 2009, 61(2), 141.
43 Lomer W M. Nature, 1958, 181(4607), 449.
44 Klobes B, Maier K, Staab T E M. Materials Science & Engineering A, 2011, 528(7), 3253.
45 Klobes B, Staab T E M, Haaks M, et al. Physica Status Solidi (RRL) -Rapid Research Letters, 2008, 2(5), 224.
46 Khan I, Starink M, Yan J. Materials Science & Engineering A, 2007, 472(1), 66.
47 Cheny T, Lee S L, Bor H Y, et al. Metallurgical and Materials Transactions, 2013, 44a(6), 2831.
48 Shao D, Zhang P, Zhang Y J, et al. Metallurgical and Materials Tran-sactions, 2017, 48a(9), 4121.
49 Marceau R, Vaucorbeil D A, Sha G, et al. Acta Metallurgica Sinica, 2013, 61(19), 7285.
50 Zheng Z, Liu W, Liao Z, et al. Acta Metallurgica Sinica, 2013, 61(10), 3724.
51 Lotter F, Petschke D, De Geuser F, et al. Scripta Materialia, 2018, 168, 104.
52 Hommat, Moody M P, Saxey D W, et al. Metallurgical and Materials Transactions, 2012, 43a(7), 2192.
53 Zhang Y, Zhang Z, Medhekar V N, et al. Acta Metallurgica Sinica, 2017, 141, 341.
54 Chen Y Q, Zhang Z Z, Chen Z, et al. Acta Metallurgica Sinica, 2017, 125, 340.
55 Zuiko I, Kaibyshev R. Journal of Alloys and Compounds, 2018, 759, 108.
56 Zuiko I S, Gazizov M R, Kaibyshev R O. The Physics of Metals and Me-tallography, 2016, 117(9), 906.
57 Wang S C, Starink M J. International Materials Reviews, 2005, 50(4), 193.
58 Bai S, Liu Z Y, Zhou X W, et al. Journal of Alloys and Compounds, 2014, 602, 193.
59 Mitlin D, Radmilovic V, Dahmen U, et al. Metallurgical and Materials Transactions a, 2003, 34a(3), 735.
60 Chen M C, Wen M C, Chiu Y C, et al. Materials, 2020, 13(24), 5631.
61 Qi H, Liu Y X, Liang X S, et al. Journal of Alloys and Compounds, 2016, 657, 318.
62 Kim I, Song M, Lee D, et al. Materials Science & Engineering A, 2020, 798, 140123.
63 Wang S, Starink M. Acta Metallurgica Sinica, 2007, 55(3), 933.
64 Wang S, Liu Z, Xia S, et al. Materials Characterization, 2017, 132, 139.
65 Magai Y, Murayama M, Tang Z, et al. Acta Metallurgica Sinica, 2001, 49(5), 913.
66 Barode J, Vayyala A, Aversa A, et al. Materials Today Communications, 2024, 39, 108978.
67 Jiang F Q, Tang L, Li S, et al. Journal of Alloys and Compounds, 2023, 945, 169311.
68 Yu Z, Li H, Cai P Z, et al. Journal of Materials Research and Technology, 2023, 23, 2010.
[1] 舒国林, 莫丽玲, 林铭贤, 杜军. 受控扩散凝固制备Al-1.75Fe-1.25Ni共晶合金的组织演变与共晶点偏移机制[J]. 材料导报, 2025, 39(19): 24090026-5.
[2] 赵启忠, 李承波, 王春霞, 徐夕, 杨鸿驰, 卢贤业, 闫焱, 孙宜琳, 阮晋德. 特种装备用高强度5A06铝合金板材退火工艺研究[J]. 材料导报, 2025, 39(19): 24090208-5.
[3] 陈怀昊, 刘海博, 邓林红. Ti-25%Nb合金β、α″和ω相的力学性能和键合特征的第一性原理研究[J]. 材料导报, 2025, 39(15): 23100055-8.
[4] 杨院霞, 郝刚领, 千佳祥, 王幸福, 许巧平, 王伟国. 硼元素及热轧对CuAlNi合金微观组织和力学性能的影响[J]. 材料导报, 2025, 39(13): 24070166-7.
[5] 张玲玲, 郏永强, 顾星宸, 张子豪, 巴志新. 锂离子电池正极集流体用涂碳铝箔的研究进展[J]. 材料导报, 2025, 39(12): 24030022-6.
[6] 郑惠泽, 何建丽, 高晨鑫, 章海明, 向雨欣. WE43镁合金温热压缩下织构演变及再结晶行为[J]. 材料导报, 2025, 39(5): 24020054-7.
[7] 姚未怡, 卜恒勇. 轧制态7050铝合金双道次热变形微观组织演变[J]. 材料导报, 2025, 39(4): 23120032-8.
[8] 万福程, 梁继超, 于爱华, 张嘉振, 路新. 钛涂层制备与后处理工艺及应用研究进展[J]. 材料导报, 2025, 39(2): 24010131-9.
[9] 范航航, 刘飞, 郑亦玮, 白朴存, 崔晓明, 王海波, 靳亮. Li/Sc复合添加对铸态Al-Cu-Mg铝合金微观组织和硬度的影响规律[J]. 材料导报, 2024, 38(24): 23090211-7.
[10] 潘宇, 况帆, 路新. 非连续增强钛基复合材料的研究现状及应用进展[J]. 材料导报, 2024, 38(21): 23080104-10.
[11] 毕广利, 冉吉上, 满宏生, 姜静, 孟帅举, 毕广阔, 王海东, 李元东. 挤压Mg-Y-Ni-Co合金的显微组织、加工性能及塑性变形行为[J]. 材料导报, 2024, 38(21): 23060144-8.
[12] 段逸飞, 王建利, 袁满, 王礼营, 杨忠, 李菲, 田皓. 镁锂合金中LPSO相的研究进展[J]. 材料导报, 2024, 38(20): 23020055-10.
[13] 李雪伍, 杜少盟, 闫佳洋, 石甜. 铝合金超疏水表面制备方法及防腐应用研究现状[J]. 材料导报, 2024, 38(19): 23030276-10.
[14] 冯文彪, 李鑫, 张亚龙. Mg3Sb2合金中Mg空位对电子传输性能的影响[J]. 材料导报, 2024, 38(17): 22110149-7.
[15] 马云路, 杨劼人, 刘泽栋, 陈瑞润. TiAl金属间化合物定向技术研究进展[J]. 材料导报, 2024, 38(15): 23100177-12.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed