Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24090026-5    https://doi.org/10.11896/cldb.24090026
  金属与金属基复合材料 |
受控扩散凝固制备Al-1.75Fe-1.25Ni共晶合金的组织演变与共晶点偏移机制
舒国林, 莫丽玲, 林铭贤, 杜军*
华南理工大学材料科学与工程学院,广州 510640
Microstructure Evolution and Eutectic Deviation Mechanism of Al-1.75Fe-1.25Ni Eutectic Alloy Prepared by Controlled Diffusion Solidification
SHU Guolin, MO Liling, LIN Mingxian, DU Jun*
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
下载:  全 文 ( PDF ) ( 16825KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 受控扩散凝固(CDS)是一种将具有高热质量与低热质量的前驱合金按一定的比例进行混合,获得所需目标成分合金的工艺。本工作采用Al-Fe和Al-Ni二元合金作为前驱熔体,使用受控扩散凝固工艺制备了Al-1.75Fe-1.25Ni共晶合金,发现其出现了显著的共晶点偏移现象,合金中呈现出典型的亚共晶组织特征。共晶点偏移约1.3倍成分的合金,其受控扩散凝固组织呈现为全共晶组织。通过凝固热分析曲线,受控扩散凝固下合金熔体的共晶平台反应时间延长,使得该过程形成了更多的初生α-Al。由吉布斯自由能曲线发现,受控扩散凝固工艺过程中的α-Al生成范围扩大并且晶核能够更稳定存在,导致该工艺下合金的共晶点成分向右偏移。本工作研究可对通过受控扩散凝固制造Al-Fe-Ni共晶合金提供一定的理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
舒国林
莫丽玲
林铭贤
杜军
关键词:  受控扩散凝固  Al-1.75Fe-1.25Ni共晶合金  共晶点偏移  凝固热分析    
Abstract: Controlled diffusion solidification (CDS) is a process in which precursor alloys with high and low thermal masses are mixed in a certain ratio to obtain alloys of desired target compositions. The Al-1.75Fe-1.25Ni eutectic alloy was prepared by controlled diffusion solidification process based on Al-Fe and Al-Ni binary alloys as precursor melts in this work, it was found that a significant eutectic point deviation phenomenon occurred, and the typical hypoeutectic microstructure characteristics were presented in the alloy. An alloy with a composition approximately 1.3 times of the eutectic point deviation displayed a fully eutectic microstructure under controlled diffusion solidification. Through solidification thermal analysis curves results, it is observed that the eutectic plateau reaction time is extended under controlled diffusion solidification, leading to the formation of more primary α-Al phases. According to the Gibbs free energy curve results, the range for α-Al formation expands and the nuclei can exist more stably, causing a shift to the right in the eutectic point of the alloy during the controlled diffusion solidification process. These findings may provide some theoretical guidance for the fabrication of Al-Fe-Ni eutectic alloys by controlled diffusion solidification.
Key words:  controlled diffusion solidification    Al-1.75Fe-1.25Ni eutectic alloy    eutectic deviation    solidification thermal analysis
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  TG146.2+1  
基金资助: 国家自然科学基金(52174363)
通讯作者:  *杜军,工学博士,教授/博士研究生导师。主要从事轻合金组织控制与表面改性领域的研究工作,具体研究方向包括:(1) 新型金属基复合材料制备及组织和性能控制; (2)铝(镁) 轻合金表面改性技术及其机制; (3)铝(镁)轻合金组织调控技术及其机制; (4)高导热与高耐蚀铝(镁)轻合金设计与开发; (5)再生铝合金组织控制与保级利用技术开发。tandujun@sina.com   
作者简介:  舒国林,华南理工大学材料科学与工程学院硕士研究生,在杜军教授的指导下进行研究,主要从事轻金属组织与性能调控方面的研究。
引用本文:    
舒国林, 莫丽玲, 林铭贤, 杜军. 受控扩散凝固制备Al-1.75Fe-1.25Ni共晶合金的组织演变与共晶点偏移机制[J]. 材料导报, 2025, 39(19): 24090026-5.
SHU Guolin, MO Liling, LIN Mingxian, DU Jun. Microstructure Evolution and Eutectic Deviation Mechanism of Al-1.75Fe-1.25Ni Eutectic Alloy Prepared by Controlled Diffusion Solidification. Materials Reports, 2025, 39(19): 24090026-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090026  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24090026
1 Li Y, Chen J, Agrawal P, et al. Journal of Manufacturing Processes, 2024, 110, 126.
2 Zhang D, Tan Z Q, Xiong D B, et al. Materials China, 2018, 37(12), 994 (in Chinese).
张荻, 谭占秋, 熊定邦, 等. 中国材料进展, 2018, 37(12), 994.
3 Ma Z, Liu M, Yang W, et al. Proceedings of the Institution of Mecha-nical Engineers, Part L:Journal of Materials: Design and Applications, 2022, 236(4), 808.
4 Ding C, Lu Z, Li S, et al. Materials Chemistry and Physics, 2023, 297, 107.
5 Zhang L, Wang J, Du Y, et al. Acta Materialia, 2009, 57(18), 5324.
6 Bian Z, Dai S, Wu L, et al. Journal of Materials Research and Technology, 2019, 8(3), 2538.
7 Langford G, Apelian D. Journal of Metals, 1980, 32(9), 28.
8 Shankar S, Saha D, Makhlouf M M, et al. Die Casting Engineer, 2004, 35(2), 48.
9 Ghiaasiaan R, Zeng X, Shankar S. Materials Science & Engineering A, 2014, 594, 260.
10 Pourgharibshahi M, Saghafian H, Divandari M, et al. Metallurgical and Materials Transactions, 2019, 50(1), 1.
11 Yang X, Li Y D, Li M, et al. Special Casting & Nonferrous Alloys, 2017, 37(3), 330 (in Chinese)
杨雄, 李元东, 李明, 等. 特种铸造及有色合金, 2017, 37(3), 330.
12 Bian Z, Xiao Y, Hu L, et al. Progress in Natural Science: Materials International, 2020, 30, 54.
13 Jiang M H, Mo L L, Du J, The Chinese Journal of Nonferrous Metals, 2023, 33(9), 2801 (in Chinese).
江民浩, 莫丽玲, 杜军. 中国有色金属学报, 2023, 33(9), 2801.
14 Zhao J, Ahmed T, Jiang H X, et al. Acta Metallurgica Sinica, 2017, 30(1), 1.
15 Rettenmayr. International Materials Reviews, 2009, 54(1), 1.
16 Yang X, Li Y D, Luo X M. China Foundry, 2019, 16(4), 238.
[1] 殷晓龙, 王志林, 王婉, 于贺春, 王汉斌, 闫文杰. 深冷挤出切削制备超细晶7075铝合金的组织、性能及时效行为研究[J]. 材料导报, 2023, 37(22): 22070192-6.
[2] 刘宏亮, 王月莹, 沙剑春, 杨炳林, 贾志明, 王鑫, 高思睿, 何立子. 固溶温度对Al-Mg-Sn-Ga-Bi合金显微组织及电化学性能的影响[J]. 材料导报, 2023, 37(14): 21120010-6.
[3] 周涵, 刘亚, 吴长军, 王建华, 苏旭平. 熔体深过冷过共晶铝硅合金的凝固组织研究[J]. 材料导报, 2023, 37(12): 21100123-6.
[4] 杨文涛, 何鹏飞, 刘明, 周永欣, 王海斗, 马国政, 白宇. 快速凝固过共晶铝硅合金的显微组织及摩擦学行为研究现状[J]. 材料导报, 2021, 35(11): 11126-11136.
[5] 刘敬福, 齐莉, 李广龙, 曲迎东. 真空搅拌TiCp/7075复合材料的组织、力学与耐磨性能[J]. 材料导报, 2021, 35(6): 6114-6119.
[6] 胡彬, 易幼平, 黄始全, 何海林, 王并乡, 郭万富. 冷轧变形量对2A14铝合金高筒件时效析出行为及力学性能的影响[J]. 材料导报, 2019, 33(24): 4122-4125.
[7] 夏春, 汪云海, 黄春平, 邢丽, 夏星, 许冬. 热轧对搅拌摩擦加工制备CNTs/Al复合材料微结构与性能的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 81-84.
[8] 戴青松, 欧世声, 邓运来, 付平, 张佳琪. 5083铝合金的热变形组织演变及晶粒度模型*[J]. 《材料导报》期刊社, 2017, 31(14): 143-146.
[9] 贾志宏, 翁瑶瑶, 丁立鹏, 程韬, 刘莹莹, 刘庆. 铝合金中的Sn微合金化:强化作用及机制*[J]. CLDB, 2017, 31(9): 123-127.
[10] 周亮, 陈送义, 彭振凌, 张星临, 范淑敏, 昌江郁, 袁丁玲, 陈康华1,2,3. 微量Co对7056铝合金组织与腐蚀性能的影响[J]. 材料导报, 2019, 33(2): 314-320.
[11] 赵光伟, 陈健, 丁翀, 方东, 叶永盛, 叶喜葱. 冷速与凝固路径对Al-Cu-Si合金相变储热性能的影响[J]. 材料导报, 2020, 34(Z1): 328-333.
[12] 宋韦韦, 罗顺成, 韩兆玉, 晁代义, 方清万, 吕正风, 程仁策. 7050铝合金铸锭中Al3Zr的析出情况对锻板性能的影响[J]. 材料导报, 2020, 34(Z1): 334-337.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed