Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24090067-5    https://doi.org/10.11896/cldb.24090067
  无机非金属及其复合材料 |
PbO-FeOx-CaO-SiO2-ZnO高铅渣还原过程熔渣结构及性能的分子动力学模拟
杨建军1, 崔雅茹1,*, 王国华1, 李小明1, 李锋1, 陈雷1, 杨树峰2
1 西安建筑科技大学冶金工程学院,西安 710055
2 北京科技大学冶金与生态工程学院,北京 100083
Molecular Dynamics Simulation on Structure and Properties of PbO-FeOx-CaO-SiO2-ZnO High-lead Slag During Reduction Smelting Process
YANG Jianjun1, CUI Yaru1,*, WANG Guohua1, LI Xiaoming1, LI Feng1, CHEN Lei1, YANG Shufeng2
1 School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an, 710055, China
2 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 6792KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高铅渣还原熔炼过程中组分不断变化,严重影响其物化性能及过程控制的稳定性。本工作采用分子动力学模拟与实验研究相结合的方法,从微观角度探究了PbO-CaO-SiO2-FeOx-ZnO系渣组分含量变化对其硅酸盐结构和动力学特性的影响规律,并通过拉曼结构分析及熔化温度、黏度宏观性质测定验证了模拟结果的可靠性。结果表明,高铅渣中对于熔渣结构及性能调控起主要作用的是[SiO4]4-、[Si2O7]6-、[Si2O6]4-等聚阴离子;随着还原过程的进行,高铅渣中桥氧结构由Q0、Q1向Q2转化,体系中以 [SiO4]4-和[Si2O7]6-为结构单元形成的化合物含量降低,而[Si2O6]4-二聚体聚阴离子含量增多,熔渣聚合度变大,流动性变差,这与熔渣黏度测定的结果完全吻合。在还原后期,渣中逐步被还原的Fe2+与硅氧聚阴离子反应,析出大量高熔点铁硅酸盐,体系中各离子的扩散能力下降,导致渣熔点和黏度相应升高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨建军
崔雅茹
王国华
李小明
李锋
陈雷
杨树峰
关键词:  高铅渣还原熔炼  分子动力学模拟  复杂硅酸盐  桥氧结构  聚合度    
Abstract: During the reduction process, the composition of PbO-CaO-SiO2-FeOx-ZnO high-lead slag continuously changes, which has a serious impact on the stability of physicochemical properties and process control. In this work, the influence mechanism of component variation on molten structure and dynamic characteristics of silicates was investigated from a microscopic perspective, through combining molecular dynamics simulation with experiments. And the reliability of the simulation results is verified by Raman spectroscopy structure analysis, macroscopic properties of melting temperature and viscosity. The results indicate that the polyanions such as [SiO4]4-, [Si2O7]6- and [Si2O6]4- play a major role in regulating the structure and properties of high-lead slag. As the reduction process goes on, the bridge oxygen structure in high lead-slag is transformed from Q0, Q1 to Q2. Meanwhile, the compounds with [SiO4]4- and [Si2O7]6- as structural units are reduced, while the amount of [Si2O6]4- dimer polyanion increases, resulting in a higher polymerization degree and worse fluidity, which is completely consistent with the viscosity measurement results of slag. In the later stage of reduction process, the reduced Fe2+ ions react with polyanion of silicon-oxygen, and precipitate a large amount of refractory iron silicate. In consequence, the diffusion ability of each ion in the system decreases, leading to a corresponding increase in melting temperature and viscosity.
Key words:  reduction smelting of high-lead slag    molecular dynamics simulation    complex silicates    bridge oxygen structure    polymerization degree
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  TF812  
基金资助: 国家自然科学基金项目(52474442);陕西省重点研发计划——一般工业项目(2022GY-160)
通讯作者:  *崔雅茹,西安建筑科技大学冶金工程学院教授、博士研究生导师。主要从事有色金属绿色提取新工艺新技术、冶金资源综合利用、新能源及储能工程、冶金热力学和动力学等方面的研究工作。yaroo@126.com   
作者简介:  杨建军,西安建筑科技大学冶金工程学院博士研究生,主要研究领域为冶金环保与资源综合利用。
引用本文:    
杨建军, 崔雅茹, 王国华, 李小明, 李锋, 陈雷, 杨树峰. PbO-FeOx-CaO-SiO2-ZnO高铅渣还原过程熔渣结构及性能的分子动力学模拟[J]. 材料导报, 2025, 39(19): 24090067-5.
YANG Jianjun, CUI Yaru, WANG Guohua, LI Xiaoming, LI Feng, CHEN Lei, YANG Shufeng. Molecular Dynamics Simulation on Structure and Properties of PbO-FeOx-CaO-SiO2-ZnO High-lead Slag During Reduction Smelting Process. Materials Reports, 2025, 39(19): 24090067-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090067  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24090067
1 Li W F, Zhan J, Fan Y Q, et al. JOM, 2017, 69, 784.
2 Ouyang K, Dou Z H, Zhang T A, et al. Journal of Mining and Metallurgy, Section B:Metallurgy, 2020, 56, 9.
3 Shevchenko M, Jak E. Calphad, 2020, 70, 101807.
4 Yang Z, Cui Y R, Hao Y, et al. The Chinese Journal of Process Engineering, 2020, 20(11), 1304 (in Chinese).
杨泽, 崔雅茹, 郝禹, 等. 过程工程学报, 2020, 20(11), 1304.
5 Chen L, Hao Z D, Yang T Z, et al. JOM, 2015, 67(5), 1123.
6 Zhang Z T, Li W F, Zhan J. Journal of Mining and Metallurgy, Section B:Metallurgy, 2018, 54(2), 179.
7 Chen L, Yang T Z, Liu W F, et al. The Chinese Journal of Nonferrous Metals, 2014, 24(4), 1056 (in Chinese).
陈霖, 杨天足, 刘伟锋, 等. 中国有色金属学报, 2014, 24(4), 1056.
8 BenKacem I, Gautron L, Coillot D, et al. Chemical Geology, 2017, 461(6), 104.
9 Li G, Pan W J, Li M. Chinese Journal of Engineering, 2023, 45(2), 234.
李刚, 潘伟杰, 李民, 等. 工程科学学报, 2023, 45(2), 234.
10 Perez L M, Romero S A, Hernandez R A, et al. Transactions of Nonferrous Metals Society of China, 2012, 22(3), 665.
11 Zhong C, Yan J T, Jiang Q, et al. Journal of Non-Crystalline Solids, 2022, 576(1), 121252.
12 Liang D, Yan Z M, Lv X W, et al. Metallurgical and Materials Transactions B, 2017, 48, 573.
13 Zhang X B, Liu C J, Jiang M F. Materials Reports, 2021, 35(21), 21099 (in Chinese).
张晓博, 刘承军, 姜茂发. 材料导报, 2021, 35(21), 21099.
14 Wang G H, Cui Y R, Li X M, et al. Minerals, 2020, 10(2), 149.
15 Wang X J, Jin H B, Zhu L G, et al. Materials Reports, 2019, 33(8), 1395 (in Chinese).
王杏娟, 靳贺斌, 朱立光, 等. 材料导报, 2019, 33(8), 1395.
16 He S P, Wang S, Jia B R, et al. Metallurgical and Materials Transactions B, 2019, 50(3), 1503.
17 Siakati C, Macchieraldo R, Kirchner B, et al. Journal of Non-Crystalline Solids, 2020, 528, 1291.
18 Jiang C H, Li K J, Zhang J L, et al. Chemical Engineering Science, 2019, 210, 115226.
19 Xu M D, He L, Si W H, et al. Chinese Journal of Engineering, 2023, 45(2), 195 (in Chinese).
徐梦迪, 何琳, 司伟汗, 等. 工程科学学报, 2023, 45(2), 195.
20 Liu J H, Yu Y W, Kong W G, et al. Journal of Non-Crystalline Solids, 2021, 578, 121354.
21 Wang G H, Cui Y R, Yang Z, et al. Chinese Journal of Computational Physics, 2021, 38(2), 215 (in Chinese).
王国华, 崔雅茹, 杨泽, 等. 计算物理, 2021, 38(2), 215.
22 Wang G H, Cui Y R, Yang J, et al. Metallurgical and Materials Tran-sactions B, 2021, 52, 1463.
23 Chen L. Molecular dynamics simulation on composition regulation of PbO-FeOx-CaO-SiO2-ZnO system for the high-lead slag reduction smelting process. Master's Thesis, Xi’an University of Architecture and Technology, China, 2021 (in Chinese).
陈雷. 组分调控对PbO-FeOx-CaO-SiO2-ZnO系高铅渣还原过程影响的分子动力学模拟. 硕士学位论文, 西安建筑科技大学, 2021.
24 Chen C Y, Hu H, Zheng C, et al. Journal of the Chinese Ceramic Society, 2022, 50(2), 378 (in Chinese).
陈春雨, 胡浩, 钟聪, 等. 硅酸盐学报, 2022, 50(2), 378.
25 Zhang X T, Cui Y R, Wang G H, et al. The Chinese Journal of Process Engineering, 2022, 22(9), 1279 (in Chinese).
张笑天, 崔雅茹, 王国华, 等. 过程工程学报, 2022, 22(9), 1279.
26 Tang X L, Zhang M, Guo M, et al. Chinese Journal of Engineering, 2020, 42(9), 1149 (in Chinese).
唐续龙, 张梅, 郭敏, 等. 工程科学学报, 2020, 42(9), 1149.
27 Guo Z L, Cui Y R, Zhao J X, et al. Journal of University of Science and Technology Liaoning, 2016, 39(1), 47 (in Chinese).
郭子亮, 崔雅茹, 赵俊学, 等. 辽宁科技大学学报, 2016, 39(1), 47.
[1] 孟小丽, 李晓艳, 闫怡红, 李文博. 基于分子动力学的沥青-集料界面动态黏附及失效特性研究[J]. 材料导报, 2025, 39(8): 24010159-8.
[2] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[3] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[4] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[5] 于文喜, 颜建伟, 万颖芳, 程娟, 易夕剑, 雷琴, 蒋海云. 聚氯乙烯混合增塑剂分子动力学模拟[J]. 材料导报, 2025, 39(16): 24100039-7.
[6] 郑度奎, 李敬法, 宇波, 黄志强, 张引弟, 刘翠伟, 赵杰, 韩东旭. 非金属PE管材氢气-甲烷渗透研究进展[J]. 材料导报, 2024, 38(16): 23020018-11.
[7] 李泽政, 申宏飞, 吴文平. 含孔洞Cu64Zr36及Cu/Cu64Zr36复合材料拉伸变形的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040235-6.
[8] 章凯倩, 王志伟, 曾少甫, 胡长鹰. 再生聚乙烯中挥发性气味物质扩散的分子动力学模拟[J]. 材料导报, 2023, 37(22): 22080036-8.
[9] 董会苁, 杨柳, 耿长建, 苏孺, 刘猛. 含空洞镍基单晶高温合金力学性能的分子动力学研究[J]. 材料导报, 2023, 37(15): 21100100-8.
[10] 白清顺, 郭万民, 窦昱昊, 郭永博, 张飞虎. 石墨烯与不锈钢微结构表面黏附行为的分子动力学模拟研究[J]. 材料导报, 2023, 37(1): 21050249-6.
[11] 曹晶晶, 张玉迪, 邓玉媛, 徐新宇. 不同尺寸的碳纳米管接枝聚酰亚胺复合材料的分子动力学模拟[J]. 材料导报, 2022, 36(23): 21060264-5.
[12] 刘冬梅, 张典, 彭艳周, 张亚利, 姚惠芹. 柠檬酸钠对半水石膏不同晶面结晶习性及力学性能的影响[J]. 材料导报, 2021, 35(18): 18052-18058.
[13] 裴培, 彭勇波. 基于分子动力学的磁流变液微观结构演化模拟与动态聚合分析[J]. 材料导报, 2021, 35(12): 12001-12007.
[14] 王晴, 康升荣, 吴丽梅, 张强, 丁兆洋. 地聚合物凝胶结构建模及分子动力学模拟[J]. 材料导报, 2020, 34(4): 4056-4061.
[15] 曹金梅, 李璐, 张瑞, 李勇智, 王政宇, 陈昆, 宋建成. 矿用干式变压器诺美(Nomex)绝缘纸多因子老化过程的降解规律[J]. 材料导报, 2020, 34(22): 22195-22200.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed