Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24090069-8    https://doi.org/10.11896/cldb.24090069
  无机非金属及其复合材料 |
基于Bi-LSTM与改进NSGAIII的混凝土配合比多目标优化
黄斌彬1, 曾磊1,*, 汪超1, 孙良福2, 胡高兴1
1 安徽工程大学建筑工程学院,安徽 芜湖 241000
2 芜湖城市建设集团股份有限公司,安徽 芜湖 241001
Multi-objective Optimization of Concrete Mixture Proportions Based on Bi-LSTM and Improved NSGAIII
HUANG Binbin1, ZENG Lei1,*, WANG Chao1, SUN Liangfu2, HU Gaoxing1
1 School of Architecture and Civil Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
2 Wuhu Urban Construction Group Co., Ltd., Wuhu 241000, Anhui, China
下载:  全 文 ( PDF ) ( 8587KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对混凝土配合比优化过程中涉及的多变量、多目标以及非线性问题,提出了一种基于双向长短期记忆神经网络(Bi-LSTM)与改进的第三代非支配排序遗传算法(NSGAIII)的求解模式。该模式首先构建了Bi-LSTM模型预测混凝土抗压强度数据驱动方法,从而准确地捕捉配合比与抗压强度之间的非线性关系;在此基础上,采用NSGAIII算法完成了抗压强度、材料成本和碳排放量等多目标优化设计。配合比优化过程中,采用了结合自适应变异和端点扰动的改进策略来提高NSGAIII算法的多目标优化性能。结果表明:Bi-LSTM模型可准确地预测抗压强度,在测试集中预测值与实际值的相关系数为 0.95、均方根误差为 5.3、平均绝对误差为4.1,模型预测精度和泛化能力均优于其他模型,具有更高的混凝土抗压强度预测精度。改进NSGAIII算法在配合比优化性能方面超越了传统的多目标粒子群(MOPSO)、NSGAII和NSGAIII等算法。该成果可为工程实践中混凝土配合比优化设计提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄斌彬
曾磊
汪超
孙良福
胡高兴
关键词:  混凝土配合比设计  抗压强度预测  多目标优化  Bi-LSTM  改进NSGAIII    
Abstract: For the challenges of multi-variable, multi-objective, and nonlinear issues in concrete mix ratio optimization, a solution that combines a Bidirectional Long Short-Term Memory (Bi-LSTM) neural network with an improved third-generation Non-dominated Sorting Genetic Algorithm (NSGAIII) is proposed. This approach first constructs a data-driven method using the Bi-LSTM model to predict compressive strength of concrete, accurately capturing the nonlinear relationship between mix ratios and compressive strength. On this basis, the NSGAIII algorithm is employed to optimize multiple objectives, including compressive strength, material cost, and carbon emissions. During the mix ratio optimization process, an enhanced strategy that incorporates adaptive mutation and endpoint perturbation is adopted to improve the multi-objective optimization performance of the NSGA-III algorithm. The results show that the Bi-LSTM model achieves accurate predictions of compressive strength, with a correlation coefficient of 0.95 between the predicted and actual values in the test dataset, a root mean square error of 5.3, and a mean absolute error of 4.1. The model outperforms other approaches in both prediction accuracy and generalization capability, especially in predicting compressive strength of concrete. The improved NSGAIII algorithm surpasses conventional methods such as multi-objective particle swarm optimization (MOPSO), NSGAII, and the standard NSGAIII in mix ratio optimization performance. These findings provide valuable reference for concrete mix ratio optimization design in engineering practice.
Key words:  concrete mix design    compressive strength prediction    multi-objective optimization    Bi-LSTM    improved NSGAIII
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52408141;51978078);安徽省自然科学基金(2408085ME122);安徽省高校优秀科研创新团队项目(2024AH010005)
通讯作者:  *曾磊,安徽工程大学建筑工程学院教授、博士研究生导师。目前主要从事型钢混凝土组合结构与混合结构等方面的研究工作。zenglei@ahpu.edu.cn   
作者简介:  黄斌彬,现为安徽工程大学建筑工程学院硕士研究生,在曾磊教授的指导下进行研究。目前主要研究新型混凝土材料力学性能。
引用本文:    
黄斌彬, 曾磊, 汪超, 孙良福, 胡高兴. 基于Bi-LSTM与改进NSGAIII的混凝土配合比多目标优化[J]. 材料导报, 2025, 39(19): 24090069-8.
HUANG Binbin, ZENG Lei, WANG Chao, SUN Liangfu, HU Gaoxing. Multi-objective Optimization of Concrete Mixture Proportions Based on Bi-LSTM and Improved NSGAIII. Materials Reports, 2025, 39(19): 24090069-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090069  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24090069
1 Zeng Z Y, Zhu Z Y, Yao W, et al. Construction and Building Materials, 2022, 329, 127082.
2 Toufigh V, Jafari A. Construction and Building Materials, 2021, 277, 122241.
3 Miao X, Chen B C, Zhao Y X. Journal of Building Engineering, 2024, 91, 109377.
4 Feng D C, Liu Z T, Wang X D, et al. Construction and Building Materials, 2020, 230, 117000.
5 Salami B A, Olayiwola T, Oyehan T A, et al. Construction and Building Materials, 2021, 301, 124152.
6 Ji T, Lin T W, Lin X J. Journal of Building Materials, 2005(6), 677 (in Chinese).
季韬, 林挺伟, 林旭健. 建筑材料学报, 2005(6), 677.
7 Han B, Ji K, Hu Y F, et al. Journal of Mining & Safety Engineering, 2021, 38(3), 584 (in Chinese).
韩斌, 吉坤, 胡亚飞, 等. 采矿与安全工程学报, 2021, 38(3), 584.
8 Daneshvar M H, Sarmadi H. Engineering Structures, 2022, 256, 114059.
9 Shan W C, Liu J P, Zhou J W. Engineering Structures, 2023, 284, 115980.
10 Liu Z P, Wang Q H, Fatahi B, et al. Engineering Structures, 2024, 310, 118083.
11 Wang P H, Qiao H X, Feng Q, et al. Journal of Building Materials, 2024, 27(3), 189 (in Chinese).
王鹏辉, 乔宏霞, 冯琼, 等. 建筑材料学报, 2024, 27(3), 189.
12 Ni T Y, Du X, Mo Y B, et al. Materials Reports, 2024, 38(10), 79 (in Chinese).
倪彤元, 杜鑫, 莫云波, 等. 材料导报, 2024, 38(10), 79.
13 Wu X G, Wang L, Chen H Y, et al. Materials Reports, 2022, 36(17), 115 (in Chinese).
吴贤国, 王雷, 陈虹宇, 等. 材料导报, 2022, 36(17), 115.
14 Wang S R, Hu P, Chen S B, et al. Journal of Building Materials, 2023, 26(7), 705 (in Chinese).
汪声瑞, 胡畔, 陈思宝, 等. 建筑材料学报, 2023, 26(7), 705.
15 Huang W, Zhou L, Ge P, et al. Materials Reports, 2021, 35(15), 15026 (in Chinese).
黄炜, 周烺, 葛培, 等. 材料导报, 2021, 35(15), 15026.
16 Bui D K, Nguyen T, Chou J S, et al. Construction and Building Materials, 2018, 180, 320.
17 Wang K W, Ren J, Yan J W, et al. Journal of Building Engineering, 2023, 76, 107150.
18 Zhang W M, Liu D W, Cao K P. Case Studies in Construction Materials, 2024, 21, e03416.
19 Zhang T R, Zhang Y Z, Wang Q H, et al. Journal of Building Engineering, 2023, 71, 106518.
20 Tran V Q, Dang V Q, Ho L S. Construction and Building Materials, 2022, 323, 126578.
21 Parichatprecha R, Nimityongskul P. Computers and Concrete, 2009, 6, 253.
22 Chen X D, Chen B, Liu G H. Journal of Hydroelectric Engineering, 2007(5), 59 (in Chinese).
陈晓东, 陈斌, 刘国华. 水力发电学报, 2007(5), 59.
23 Cheng M Y, Prayogo D, Wu Y W. Journal of Computing in Civil Engineering, 2014, 28, 06014003.
24 Sun B B, Wang P F, Guo J J, et al. Journal of Building Engineering, 2024, 96, 110653.
25 Wang J X, Wen Y J, Wu K G, et al. Journal of Energy Storage, 2024, 93, 112298.
26 Sun B, Niu N N. Ocean Engineering, 2024, 311, 118944.
27 Schmidhuber J, Hochreiter S. Neural Computation, 1997, 9, 1735.
28 Lu Y H, Tang L Q, Chen C B, et al. Engineering Structures, 2023, 285, 116000.
29 Deb K, Jain H. IEEE Transactions on Evolutionary Computation, 2013, 18, 577.
30 Zhang J F, Huang Y M, Wang Y H, et al. Construction and Building Materials, 2020, 253, 119208.
31 Ren Q B, Li W W, Li M C, et al. Journal of Hydraulic Engineering, 2022, 53(1), 98 (in Chinese).
任秋兵, 李文伟, 李明超, 等. 水利学报, 2022, 53(1), 98.
32 Golafshani E M, Behnood A. Cement and Concrete Composites, 2019, 96, 95.
33 Wang C, Yu T T, Curiel-Sosac J L, et al. Structural and Multidisciplinary Optimization, 2019, 60, 757.
34 Yeh I C. Cement and Concrete Research, 1998, 28, 1797.
35 Li Y, Zhang J P, He Y Z, et al. Construction and Building Materials, 2023, 409, 134098.
[1] 李俊炎, 张伟强, 高志玉. 机器学习辅助高熵合金设计的研究进展[J]. 材料导报, 2025, 39(18): 24080091-10.
[2] 陈自敏, 冉志红, 张艳, 宋泽冈, 袁博. 混凝土裂缝修复用改性环氧树脂的多目标优化[J]. 材料导报, 2025, 39(10): 24040223-9.
[3] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[4] 王静文, 王伟. 玄武岩纤维增强泡沫混凝土响应面多目标优化[J]. 材料导报, 2019, 33(24): 4092-4097.
[5] 梁存光,李新梅. 基于灰色关联分析与回归分析WC-12Co涂层工艺参数的多目标优化[J]. 《材料导报》期刊社, 2018, 32(10): 1752-1756.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed