Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24090207-8    https://doi.org/10.11896/cldb.24090207
  无机非金属及其复合材料 |
SAP孔引入对水泥基材料压溃行为的影响
苏佶智1, 杨世超2, 邵华3, 张戊晨1, 杨海涛2,*
1 国网河北省电力有限公司经济技术研究院,石家庄 050000
2 石家庄铁道大学土木工程学院,石家庄 0500431
3 河北汇智电力工程设计有限公司,石家庄 050000
The Influence of SAP Void Introduction on the Crushing Behavior of Cement-based Materials
SU Jizhi1, YANG Shichao2, SHAO Hua3, ZHANG Wuchen1, YANG Haitao2,*
1 State Grid Hebei Electric Power Co., Ltd.,Economic and Technological Research Institute, ShiJiazhuang 050000, China
2 School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
3 Hebei Huzhi Power Engineeing Design Co., Ltd., Shijiazhuang 050000, China
下载:  全 文 ( PDF ) ( 10058KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 泡沫混凝土是飞机特性材料拦阻系统最常用的芯部材料,但泡沫混凝土存在发泡行为难控制、气孔体系不稳定且耐水性能不高等缺点。高吸水性树脂(SAP)孔是一种稳定性、均匀性和设计性均优于气孔的人造孔。对浸水前后含SAP孔水泥基材料的压溃行为进行了研究,并借助沸煮法、纳米压痕和X射线衍射分析等技术研究了SAP对水泥基材料孔结构、微观力学性能和矿物组成的影响。结果表明:增加SAP掺量导致水泥基材料应力-压溃度曲线中应力值降低、最大压溃度增加。提升SAP掺量可造成基体硬度值降低,原因在于补偿,而非SAP颗粒的释水。与泡沫混凝土相比,含SAP水泥基材料的压溃性能更加稳定,这是因为SAP孔体系的均匀性和稳定性均优于气孔体系。此外,含SAP水泥基材料的耐水性能更加优异,这源于其较强的基体力学性能和较高的孔隙率。SAP孔的引入为多孔水泥基材料压溃性能的设计提供了新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏佶智
杨世超
邵华
张戊晨
杨海涛
关键词:  水泥基材料  压溃行为  高吸水性树脂  微观力学性能  孔结构    
Abstract: Foam concrete is the most commonly used core material for aircraft arresting systems. However, foam concrete has some shortcomings, such as difficulty in controlling the foaming process, an unstable void system, and poor water resistance. Superabsorbent polymer (SAP) voids are artificial voids that offer better stability, uniformity, and designability compared to air voids. In this work, the crushing behavior of cement-based materials (CBMs) containing SAP voids were investigated before and after immersion. Moreover, the effects of SAP on the pore structure, micromechanical properties, and mineral composition of CBMs were studied using boiling tests, nanoindentation, and X-ray diffraction analysis. The results show that increasing the SAP dosage leads to a decrease in stress values and an increase in maximum crushability in the stress-crushability curve of CBMs. Increasing the SAP dosage also causes a reduction in the hardness of the matrix, which is attributed to the addition of extra water rather than the release of water from SAP particles. Compared to foam concrete, the crushing performance of CBMs containing SAP voids is more stable due to the superior uniformity and stability of the SAP void system. Additionally, the water resistance of CBMs containing SAP voids is superior, owing to the stronger mechanical properties of the matrix and the higher porosity of CBMs. The introduction of SAP voids provides new insights into the design of crushing performance for porous CBMs.
Key words:  cement-based materials    crushing behavior    superabsorbent polymer    micromechanical properties    pore structure
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  X511  
基金资助: 中央引导地方科技发展资金项目(236Z1504G);国网河北省电力有限公司(河北汇智电力工程设计有限公司)科技研发资助项目(SGHEHZ00SJJS 2400045)
通讯作者:  *杨海涛,博士,石家庄铁道大学讲师、硕士研究生导师。主要从事耐低温混凝土和高性能混凝土自愈合研究。yanghaitao@stdu.edu.cn   
作者简介:  苏佶智,博士,国网河北省电力有限公司经济技术研究院高级工程师。主要从事新型装配式结构抗震性能及绿色建造研究。
引用本文:    
苏佶智, 杨世超, 邵华, 张戊晨, 杨海涛. SAP孔引入对水泥基材料压溃行为的影响[J]. 材料导报, 2025, 39(19): 24090207-8.
SU Jizhi, YANG Shichao, SHAO Hua, ZHANG Wuchen, YANG Haitao. The Influence of SAP Void Introduction on the Crushing Behavior of Cement-based Materials. Materials Reports, 2025, 39(19): 24090207-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090207  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24090207
1 Fan M. Research on the taxiing distance of aircraft under EMAS core layer obstruction. Master's Thesis. Tianjin Polytechnic University, 2016 (in Chinese).
范苗苗. EMAS核心层阻滞下飞机滑行距离研究. 硕士学位论文, 天津工业大学, 2016.
2 Zeng Z J, Xu W, Xie D Q, et al. Journal of Transportation Engineering, 2021, 21 (2), 56 (in Chinese)
曾志军, 徐文, 谢德擎, 等. 交通运输工程学报, 2021, 21(2), 56.
3 Yang X, Zhang Z, Xing Y, et al. Aerospace Science and Technology, 2017, 66, 284.
4 Zhang C, Tan X, Tian H, et al. International Journal of Mining Science and Technology, 2022, 32(5), 2087.
5 Meng Y F, Zhang W M, Gao L X. Construction and Building Materials, 2022, 331, 127299.
6 Zhong P, Wyrzykowski M, Toroppovs N, et al. Cement and Concrete Research, 2019, 123, 105789.
7 Snoeck D, Goethals W, Hovind J, et al. Cement and Concrete Research, 2021, 147, 106528.
8 Civil C O, Resource Engineering U O S, Technology B, et al. Materials and Structures, 2019, 52(5), 1.
9 Mignon A, Snoeck D, Dubruel P, et al. Materials, 2017, 10(3), 237.
10 Yang J, Wang F, He X, et al. Cement and Concrete Composites, 2019, 97, 54.
11 Justs J, Wyrzykowski M, Bajare D, et al. Cement and Concrete Research, 2015, 76, 82.
12 Snoeck D, Velasco L F, Mignon A, et al. Cement and Concrete Research, 2015, 77, 26.
13 Laustsen S, Hasholt M T, Jensen O M. Materials and Structures, 2013, 48(1-2), 357.
14 Kim M, Kang S H, Hong S G, et al. Materials (Basel), 2019, 12(23), 3863.
15 Snoeck D, Jensen O M, De Belie N. Cement and Concrete Research, 2015, 74, 59.
16 Snoeck D, Steuperaert S, Van Tittelboom K, et al. Cement and Concrete Research, 2012, 42(8), 1113.
17 Snoeck D, Van Den Heede P, Van Mullem T, et al. Cement and Concrete Research, 2018, 113, 86.
18 Deng H, Liao G. Construction and Building Materials, 2018, 170, 455.
19 Hong G, Choi S. Construction and Building Materials, 2018, 164, 570.
20 Beushausen H, Gillmer M, Alexander M. Cement and Concrete Compo-sites, 2014, 52, 73.
21 Didier S, Kim V T, Stijn S, et al. Journal of Intelligent Material Systems and Structures, 2014, 25(1), 13.
22 Geuntae Hong, Seongcheol Choi. Construction and Building Materials, 2017, 143, 366.
23 Hua H, Xuan W. IOP Conference Series: Earth and Environmental Science, 2021, 719(4), 632.
24 Jones M R, Zheng L. Magazine of Concrete Research, 2013, 65(4), 209.
25 Christoe S, Kendra A E, Wanwipa S, et al. Cement and Concrete Research, 2022, 151, 106648.
26 Yang H T, Wu L P, Liu J H, et al. Cement and Concrete Composites, 2022, 130, 104561.
27 Fang J. Preparation and performance of ultra-lightweight concrete for engineered material arresting system. Master's Thesis, China Building Materials Academy, China, 2020 (in Chinese)
方俊. 飞机拦阻系统用超轻质混凝土制备及性能研究. 硕士学位论文, 中国建筑材料科学研究总院, 2020.
28 Laurence D M, Els M, Kim V T, et al. Construction and Building Materials, 2021, 286, 122948.
29 Abed J M, Khaleel B A, Aldabagh I S, et al. Journal of Physics, Confe-rence Series, 2021, 1973(1).
30 Jae Y H, Hwan B Y, Yubin J. Construction and Building Materials, 2021, 303, 124508.
31 Ma X, Liu J, Wu Z, et al. Construction and Building Materials, 2017, 131, 476.
32 Hoppe Filho J, Rodrigues C S, Ribeiro L S O P, et al. Journal of Building Pathology and Rehabilitation, 2020, 6(1), 99.
33 Test C B M, Certification Group Co., Test C B M, et al. Key Engineering Materials, 2017, 4348, 537.
34 Zhou J, Jin S, Sun L. Construction and Building Materials, 2021, 266(Part A), 120956.
35 Liu J H, Farzadnia Nima, Shi C J. Cement and Concrete Research, 2021, 149, 106560.
36 Wang F, Yang J, Hu S, et al. Cement and Concrete Research, 2016, 81, 112.
37 Snoeck D, Pel L, Belie D N, et al. Cement and Concrete Research, 2020, 135, 244.
38 Wenyi Yan, Chung Lun Pun, George P. Simon. Composites Science and Technology, 2012, 72(10), 1147.
39 Chen J. Hydrationprocess and correlation of macro-and meso-/micro-properties of early-age concrete. Ph.D. Thesis, Zhejiang University, China, 2014 (in Chinese)
陈军. 早龄期混凝土水化进程及宏观与细微观性能相关性研究. 博士学位论文, 浙江大学, 2014.
40 Xie F X, Zhang C L, Cai D P, et al. Frontiers in Materials, 2020, 7, 588130.
41 Yang H, Bian H, Jing Q, et al. Journal of Building Engineering, 2024, 94, 109871.
42 Feng S W, Zhou Y, Li Q M. Construction and Building Materials, 2022, 357, 129340.
43 Steyn W J, Lombard S, Horak E. Journal of Performance of Constructed Facilities, 2016, 30(1), C4014006.
44 Yang L, Liu G J, Gao D Y, et al. Construction and Building Materials, 2021, 272, 121945.
45 Zhang S L, Qi X Q, Guo S Y, et al. Construction and Building Materials, 2022, 339, 127683.
46 Shariq M, Prasad J, Masood A. Construction and Building Materials, 2013, 40, 944.
47 Wang X, Xu K, Li Y, et al. Construction and Building Materials, 2018, 180, 103.
48 Chen L L, Chen X D, Wang L, et al. Construction and Building Materials, 2023, 394, 132141.
49 Olawuyi B J, Boshoff W P. Construction and Building Materials, 2017, 135, 580.
50 Kong X M, Zhang Z L, Lu Z C. Materials and Structures, 2015, 48(9), 2741.
51 Snoeck D, Pel L, De Belie N. Construction and Building Materials, 2019, 223, 244.
52 He Z, Shen A, Guo Y, et al. Construction and Building Materials, 2019, 225, 569.
53 Hu Y L, Hao J G, Zhao X M, et al. Journal of Nanjing University of Science and Technology, 2019, 43 (3), 363 (in Chinese).
胡艳丽, 郝晋高, 赵向敏, 等. 南京理工大学学报, 2019, 43(3), 363.
54 Gai H D, Feng C H, Dong Y J, et al. Materials Reports, 2020, 34 (7), 7107 (in Chinese).
盖海东, 冯春花, 董一娇, 等. 材料导报, 2020, 34(7), 7107.
55 Wang F, Yang J, Cheng H, et al. ACI Materials Journal, 2015, 112(3), 463.
56 Zhutovsky S, Kovler K. Materials and Structures, 2013, 46(10), 1599.
57 Snoeck D, Schaubroeck D, Dubruel P, et al. Construction and Building Materials, 2014, 72, 148.
58 Qian J S, Yu J C, Sun H Q, et al. Journal of the Chinese Ceramic Society, 2017, 45 (11), 1569 (in Chinese).
钱觉时, 余金城, 孙化强, 等. 硅酸盐学报, 2017, 45(11), 1569.
59 Liu X, Feng P, Shen X Y, et al. Materials Reports, 2021, 35 (9), 9157 (in Chinese)
刘新, 冯攀, 沈叙言, 等. 材料导报, 2021, 35(9), 9157.
60 Liu Y, Zhu Z D, He S, et al. Construction and Building Materials, 2023, 403, 133155.
61 Tang S W, Wang Y, Geng Z C, et al. Fractal and Fractional, 2021, 5(2), 47.
62 Li Z L, Liu S D, Tong T T, et al. Journal of Materials Science and Engineering, 2023, 41 (5), 703 (in Chinese).
李宗利, 刘士达, 童涛涛, 等. 材料科学与工程学报, 2023, 41(5), 703.
[1] 刘奎生, 崔勇, 于晓, 栾海涛, 宋奇达, 陈佳俊, 马子翔, 房奎圳. 恒湿与变湿养护条件下MgO膨胀剂对水泥砂浆膨胀性能的影响分析[J]. 材料导报, 2025, 39(7): 24020085-7.
[2] 杨军兆, 张戎令, 薛彦瑾, 王小平, 窦晓峥, 宋毅. 基于分形维数的硫酸盐环境下混凝土抗蚀系数及微观机理研究[J]. 材料导报, 2025, 39(7): 24020033-7.
[3] 黄昆鹏, 张雨波, 杨楠. 类魔方式的多孔超材料设计及可调控弹性模量的研究[J]. 材料导报, 2025, 39(7): 23120207-9.
[4] 李刊, 魏智强, 路承功, 蒲育. 纳米SiO2改性聚合物水泥基复合材料孔隙结构演变特征及强度预测[J]. 材料导报, 2025, 39(6): 24070202-10.
[5] 王志航, 白二雷, 黄河, 杜宇航, 任彪. 碳纤维增强水泥基材料界面改性研究进展[J]. 材料导报, 2025, 39(5): 24020133-9.
[6] 张盼盼, 吕忠. 内置修复剂轻骨料水泥基材料自修复性能及机理研究进展[J]. 材料导报, 2025, 39(19): 24080181-9.
[7] 马亚鹏, 翟文辉, 张东生, 朱涛, 杨秋宁, 毛明杰. 复合外加剂对3D打印砂浆流变与建造性的协同机制及孔结构研究[J]. 材料导报, 2025, 39(17): 25030044-8.
[8] 崔嘉铭, 马红瑞, 马哲洋, 纪璐鑫, 王胜, 巴明芳. 二次铝灰烧结渣料磨细粉对改性硫氧镁水泥基材料性能的影响及机理研究[J]. 材料导报, 2025, 39(15): 24040219-9.
[9] 郭寅川, 樊鹏龙, 申爱琴, 戴晓倩, 姚超, 杨雪瑞, 李震南. 轮载-动水耦合作用下玄武岩纤维路面混凝土性能衰减及机理研究[J]. 材料导报, 2025, 39(13): 24010002-8.
[10] 王志航, 白二雷, 刘俊良, 周俊鹏, 任彪. 碳纤维及碳纳米材料改性水泥基材料电磁屏蔽及吸波性能研究进展[J]. 材料导报, 2025, 39(13): 24030248-9.
[11] 杜习贤, 李刚, 王爱芹, 曹澳利, 孙建仁. 水泥基材料氯离子的固化进展研究[J]. 材料导报, 2025, 39(13): 24040220-14.
[12] 程立年, 刘娟红, 周大卫, 郭凌志, 陈德平. 混凝土孔隙结构特征对超低温力学性能影响研究[J]. 材料导报, 2025, 39(13): 24060113-7.
[13] 李少飞, 魏智强, 乔宏霞, 曹辉, 赵辛源, 葸玲玲. 纳米氧化石墨烯与聚合物改性水泥基复合材料性能研究进展[J]. 材料导报, 2025, 39(10): 24040171-12.
[14] 申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
[15] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed