Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 24060113-7    https://doi.org/10.11896/cldb.24060113
  无机非金属及其复合材料 |
混凝土孔隙结构特征对超低温力学性能影响研究
程立年1,2, 刘娟红1,3,4,*, 周大卫1, 郭凌志1, 陈德平1
1 北京科技大学土木与资源工程学院,北京 100083
2 黄山学院建筑工程学院,安徽 黄山 245041
3 北京科技大学城镇化与城市安全研究院,北京 100083
4 北京科技大学城市地下空间工程北京市重点实验室,北京 100083
Study on the Effect of Concrete Pore Structure Characteristics on the Mechanical Properties Under Cryogenic Conditions
CHENG Linian1,2, LIU Juanhong1,3,4,*, ZHOU Dawei1, GUO Lingzhi1, CHEN Deping1
1 School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 School of Architecture and Civil Engineering, Huangshan University, Huangshan 245041, Anhui, China
3 Research Institute of Urbanization and Urban Safety, University of Science and Technology Beijing, Beijing 100083, China
4 Beijing Key Laboratory of Urban Underground Space Engineering, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 13342KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高性能混凝土材料未来作为全混凝土LNG储罐、月面基地等特种工程建筑材料具有广阔的应用前景。本工作研究了混凝土的宏观力学性能、微观孔结构、低温孔隙水结冰行为的演变规律,利用分形维数分析了各类型孔结构,并建立了孔隙率、强度相对增幅及分形维数的关系。结果表明:随着温度的降低,水胶比越大,强度增幅越高;孔隙率随着水胶比的增加而降低,复合胶凝材料净浆孔结构主要以50 nm以下的小孔为主。分形维数与孔隙率呈线性相关,而水胶比越低,凝胶孔的分形维数越大;不同低温下分形维数与相对强度增长率相关性差异明显,其中-45 ℃的分形维数与强度增长率呈负相关,分形维数的降低说明该低温下凝胶孔内孔隙冰的均质性增加,在-165 ℃时凝胶内孔隙冰的填充作用更加明显,分形维数降低,导致强度下降。DSC测试结果显示,-45 ℃左右出现明显的结晶放热峰,放热量与水胶比呈正相关,而-105 ℃的吸热峰可能与孔隙冰结构晶型转变有关,这也是分形维数与强度增长率相关系数突变的原因。研究成果可为探究超低温降温过程中混凝土的力学性能演化规律提供一定的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程立年
刘娟红
周大卫
郭凌志
陈德平
关键词:  超低温  混凝土  水胶比  低场核磁共振  孔结构  分形维数  低温结晶    
Abstract: High-performance concrete has a broad future application prospect as all-concrete LNG storage tanks, lunar surface bases and other special engineering constructions. In this work, the evolution of macroscopic mechanical properties, microscopic pore structure, and pore water freezing behavior of concrete were investigated, various types of pore structures were analyzed using fractal dimensions, and established the relationship between porosity, relative strength increment, and fractal dimensions. The results show that when the temperature decreases, the strength increases, and the higher the water-to-binder ratio, the higher the strength increase;porosity decreases with the increase of water-to-binder ratio, and the pore structure of the composite cementitious material’s net slurry is primarily composed of small pores under 50 nm. The fractal dimension is linearly correlated with porosity, while the fractal dimension of gel pores increases with lower water-to-binder ratios. The correlation between fractal dimension and the relative strength growth rate at various cryogenic temperatures differed significantly, where it is negatively correlated with the strength growth rate at -45 ℃. The decrease in fractal dimension indicates the filling effect of ice in the gel pores is more pronounced, causing a decrease in fractal dimension and a reduction in strength. The DSC test shows an obvious crystallization exothermic peak around -45 ℃, which is positively correlated with the water-to-binder ratio. The heat absorption that occurring at -105 ℃ may be associated with a crystalline transition in the pore ice structure, causing a sudden change in the correlation coefficient between the fractal dimension and the strength growth rate. The research results provide a reference for investigating the evolution law of mechanical properties of concrete during the process of cryogenic cooling.
Key words:  cryogenic temperature    concrete    water-binder ratio    low-field nuclear magnetic resonance    pore structure    fractal dimension    cryogenic crystallization
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  TU528.0  
基金资助: 国家重点研发计划(2022YFB2602605)
通讯作者:  *刘娟红,博士,北京科技大学土木与资源工程学院,教授,博士研究生导师。长期从事现代混凝土技术、固体废弃物在水泥基材料中的高效利用等方面的研究应用工作。juanhong1966@hotmail.com   
作者简介:  程立年,博士,黄山学院建筑工程学院讲师。博士期间在刘娟红教授的指导下主要从事超低温高性能混凝土的研究。目前研究方向为极端低温下混凝土材料性能评估、固废综合利用、矿业工程等。
引用本文:    
程立年, 刘娟红, 周大卫, 郭凌志, 陈德平. 混凝土孔隙结构特征对超低温力学性能影响研究[J]. 材料导报, 2025, 39(13): 24060113-7.
CHENG Linian, LIU Juanhong, ZHOU Dawei, GUO Lingzhi, CHEN Deping. Study on the Effect of Concrete Pore Structure Characteristics on the Mechanical Properties Under Cryogenic Conditions. Materials Reports, 2025, 39(13): 24060113-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060113  或          https://www.mater-rep.com/CN/Y2025/V39/I13/24060113
1 Kogbara R B, Iyengar S R, Grasley Z C, et al.Construction and Building Materials, 2013, 47, 760.
2 Jiang Z W, Zhang N, Li X Y, et al.Materials Reports, 2011, 25(13), 1 (in Chinese).
蒋正武, 张楠, 李雄英, 等. 材料导报, 2011, 25(13), 1.
3 Lin H, Han Y, Liang S, et al.Construction and Building Materials, 2022, 345, 128287.
4 Jiang Z W, He B, Zhu X P, et al.Construction and Building Materials, 2020, 257, 119456.
5 Dahmani L, Khenane A, Kaci S.Cryogenics, 2007, 47(9-10), 517.
6 Krstulovic-Opara N.ACI Materials Journal, 2007, 104(3), 297.
7 Van de Veen. In:Report Stevin Laboratory, Concrete Structures. Netherlands, 1987, pp. 25.
8 Monfore G E, Lentz A E. In:Portland Cement Assoc R & D Lab Bull. Washington DC, USA, 1962, pp. 33.
9 Liu C. Experimental investigations on mechanical property of concrete exposed to low temperatures. Master’s Thesis, Tsinghua University, China, 2011(in Chinese).
刘超. 混凝土低温受力性能试验研究. 硕士学位论文, 清华大学, 2011.
10 Tognon G. In:Fifth International Symposium on the Chemistry of Cement. Tokyo, Japan, 1968, pp. 229.
11 Miura T.Materials and Structures, 1989, 22(4), 243.
12 Zhang Y S, Zhang W H, Chen Z Y.Materials Reports, 2017, 31(23), 1 (in Chinese).
张云升, 张文华, 陈振宇. 材料导报, 2017, 31(23), 1.
13 Marshall A L.Cryogenics, 1982, 22(11), 555.
14 Jiang Z W, Deng Z L, Zhu X P, et al.Cryogenics, 2018, 94, 5.
15 Rostasy F S, Schneider U, Wiedemann G.Cement and Concrete Research, 1979, 9(3), 365.
16 Li W Y, Yin J H, Wang J, et al.Journal of the Chinese Ceramic Society, 2022, 50(11), 2992 (in Chinese).
李文郁, 尹健昊, 王健, 等. 硅酸盐学报, 2022, 50(11), 2992.
17 He P, Yu J, Xue L, et al.Journal of Building Engineering, 2022, 55, 104696.
18 Zhao H, Qin X, Liu J, et al.Construction and Building Materials, 2018, 189, 934.
19 Li C J, Sun Z P, Li Q, et al.Materials reports, 2016, 30(13), 133 (in Chinese).
李春景, 孙振平, 李奇, 等. 材料导报, 2016, 30(13), 133.
20 McDonald P J, Mitchell J, Mulheron M, et al.Cement and Concrete Research, 2007, 37(3), 303.
21 Korb J P, Monteilhet L, McDonald P J, et al.Cement and concrete research, 2007, 37(3), 295.
22 Huang G S, Su L, Xue C Z, et al.Acta Materiae Compositae Sinica. DOI:10.13801/j.cnki.fhclxb.20240520.002 (in Chinese).
黄观送, 苏丽, 薛翠真, 等. 复合材料学报, DOI:10.13801/j.cnki.fhclxb.20240520.002.
23 Yang J Z, Zhang R L, Xue Y J, et al.Materials Reports, DOI:10.11896/cldb.24020033 (in Chinese).
杨军兆, 张戎令, 薛彦瑾, 等. 材料导报, DOI:10.11896/cldb.24020033.
24 Jiang Z, He H, Tian G L, et al.Fractal and Fractional, 2024, 8(1), 42.
25 State Administration for Market Regulation, Standardization Administration.Sand for construction, GB/T 14684-2022. Standards Press of China, China, 2022 (in Chinese).
国家市场监督管理总局, 国家标准化管理委员会. 建设用砂:GB/T 14684-2022. 中国标准出版社, 2022.
26 Ministry of Housing and Urban-Rural Development of the People’s Republic of China.Standard for test methods of concrete physical and mechanical properties:GB/T 50081-2019. China Architecture & Building Press, China, 2019 (in Chinese).
中华人民共和国住房与城乡建设部. 混凝土物理力学性能试验方法标准:GB/T 50081-2019. 中国建筑工业出版社, 2019.
27 Brun, M, Lallemand A, Quinson J F, et al.Thermochimica Acta, 1977, 21(1), 59.
28 Wu Z W, Lian H Z.High performance concrete, China Railway Press, China, 1999 (in Chinese).
吴中伟, 廉慧珍. 高性能混凝土, 中国铁道出版社, 1999.
29 Mehta P K, Monteiro P J.Concrete, microstructure, properties, and materials, McGraw-Hill Education, New York, 2014.
30 Yu A M, Ma K, Wang Z P, et al.Journal of Building Materials, 2021, 24(5), 916(in Chinese).
佘安明, 马坤, 王中平, 等. 建筑材料学报, 2021, 24(5), 916.
31 Faure P F, Caré S, Magat J, et al.Construction and Building Materials, 2012, 29, 496.
32 Yao Y B, Liu D M, Che Y, et al.Fuel, 2010, 89(7), 1371.
33 Cai Y D, Liu D M, Pan Z J, et al.Fuel, 2013, 108, 292.
34 Valori A, McDonald P J, Scrivener K L.Cement and Concrete Research, 2013, 49, 65.
35 Rifai H, Staude A, Meinel D, et al.Cement and Concrete Research, 2018, 111, 72.
36 Bhattacharja S, Moukwa M, D’Orazio F, et al.Advanced Cement Based Materials, 1993, 1(2), 67.
37 Han Y D, Guo Y Q, Li J H, et al.Materials Reports, 2023, 37(3), 158 (in Chinese).
韩宇栋, 郭奕群, 李嘉豪, 等. 材料导报, 2023, 37(3), 158.
38 Tang Y J, Zuo X B, He S L, et al.Journal of the Chinese Ceramic Society, 2016, 44(11), 1579(in Chinese).
汤玉娟, 左晓宝, 何绍丽, 等. 硅酸盐学报, 2016, 44(11), 1579.
39 Yan P Y, Yang W Y, Cui L, et al.Journal of Building Materials, 1998(1), 70(in Chinese).
阎培渝, 杨文言, 崔路, 等. 建筑材料学报, 1998(1), 70.
40 Zhang Q Q, Liu J Z, Zhang L H, et al.Materials Reports, 2020, 34(22), 22054(in Chinese).
张倩倩, 刘建忠, 张丽辉, 等. 材料导报, 2020, 34(22), 22054.
41 Zhang B, Li S.Industrial & Engineering Chemistry Research, 1995, 34(4), 1383.
42 Han X, Feng J J, Wang B M.Cement and Concrete Composites, 2023, 139, 105052.
43 Yin T Y, Jin L, Liu K N, et al.Construction and Building Materials, 2024, 427, 136287.
44 Monteiro P J, Rashed A I, Bastacky J, et al.Cement and Concrete Research, 1989, 19(2), 306.
45 Usherov-Marshak A V, Zlatkovskii O A.Colloid Journal, 2002, 64(2), 217.
46 Sun Z, Scherer G W.Cement and Concrete Research, 2010, 40(5), 740.
47 Wang K W, Monteiro P J, Rubinsky B, et al.ACI Materials Journal, 1996, 93(4), 370.
48 Chatterji S.Cement and Concrete Research, 1999, 29(4), 627.
49 Liu L, Ye G, Schlangen E, et al.Cement and Concrete Composites, 2011, 33(5), 562.
50 Sun Z, Scherer G W.Cement and Concrete Research, 2010, 40(2), 260.
51 He B, Xie M J, Jiang Z W, et al.Construction and Building Materials, 2020, 243, 118256.
52 Yang Z F, Weiss W J, Olek J.Journal of materials in Civil Engineering, 2006, 18(3), 424.
53 Wu M, Johannesson B, Geiker M.Journal of Thermal Analysis and Calorimetry, 2014, 115, 1335.
54 Quigley D.The Journal of Chemical Physics, 2014, 141(12), 121101.
55 Murray B J, Knopf D A, Bertram A K.Nature, 2005, 434(7030), 202.
56 Li M D, Zhang J, Niu H Y, et al.The Journal of Physical Chemistry Letters, 2022, 13(36), 8601.
57 Rosu-Finsen A, Davies M B, Amon A, et al.Science, 2023, 379(6631), 474.
58 Mrevlishvili G M, Privalov P L.Journal of Structural Chemistry, 1968, 9(1), 5.
[1] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[2] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[3] 王艳, 常天风, 杨子凡, 李伊岚. 超高性能混凝土-普通混凝土界面粘结性能研究[J]. 材料导报, 2025, 39(7): 24020129-6.
[4] 杨军兆, 张戎令, 薛彦瑾, 王小平, 窦晓峥, 宋毅. 基于分形维数的硫酸盐环境下混凝土抗蚀系数及微观机理研究[J]. 材料导报, 2025, 39(7): 24020033-7.
[5] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[6] 李克亮, 杜建, 陈爱玖, 韩小燕. 污水管道混凝土微生物腐蚀机理、影响因素和模拟试验方法综述[J]. 材料导报, 2025, 39(7): 23120043-11.
[7] 姜彦杰, 刘浩天, 刘海峰, 车佳玲, 杨维武. 硫酸盐冻融后沙漠砂混凝土单轴受压力学性能试验研究[J]. 材料导报, 2025, 39(7): 23110222-11.
[8] 黄昆鹏, 张雨波, 杨楠. 类魔方式的多孔超材料设计及可调控弹性模量的研究[J]. 材料导报, 2025, 39(7): 23120207-9.
[9] 杜刚, 李亮, 王子晨, 吴俊, 杜修力. 碳纤维混凝土高温冷却后动态压缩性能试验研究[J]. 材料导报, 2025, 39(6): 24010268-6.
[10] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[11] 易忠来, 纪文骁, 李化建, 杨志强, 温浩, 王振. 混凝土稳健性评价方法及提升措施研究进展[J]. 材料导报, 2025, 39(6): 24020022-12.
[12] 王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
[13] 潘杜, 牛荻涛, 罗大明. 海水海砂混凝土中低合金钢筋钝化膜结构及厚度预测模型[J]. 材料导报, 2025, 39(6): 23120173-8.
[14] 牛荻涛, 杨瑞希, 吕瑶, 孙杏杏, 曹志远, 吴鸿渠. SO2和CO2共同作用下混凝土性能劣化研究[J]. 材料导报, 2025, 39(5): 23120166-7.
[15] 曾鲁平, 乔敏, 赵爽, 王伟, 陈俊松, 朱伯淞, 冉千平, 洪锦祥. 乙烯-醋酸乙烯酯共聚物对喷射混凝土力学强度、渗透性能及水化微观
结构的影响
[J]. 材料导报, 2025, 39(5): 24020003-9.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed