Study on Annealing Process of High-strength 5A06 Aluminum Alloy Sheet for Special Equipment
ZHAO Qizhong1,2,5, LI Chengbo3,*, WANG Chunxia2, XU Xi3, YANG Hongchi1, LU Xianye1, YAN Yan1,5, SUN Yilin4, RUAN Jinde1
1 ALG Aluminium Inc., Nanning 530031, China 2 College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, Guangxi, China 3 School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan, 411105, Hunan, China 4 China Aerospace Manufacturing Technology Research Institute, Beijing, 110024, China 5 ALG Aluminium lnc., Guangxi Key Laboratory of Materials and Processes of Aluminum Alloys, Nanning 530031, China
Abstract: The effects of annealing temperature on the mechanical properties, corrosion resistance, and microstructure of 5A06 aluminum alloy cold-rolled sheet were studied by tensile testing, intergranular corrosion testing, optical microstructure observation, and electron backscatter diffraction (EBSD) analysis. The research results show that for 5A06 aluminum alloy cold-rolled sheets used in special equipment, when the annealing temperature is below 120 ℃, it's the stabilization annealing stage, and the intergranular corrosion resistance of the alloy is slightly improved. The annealing temperature within the range of 150 to 240 ℃ is the recovery treatment stage, during which the intergranular corrosion resistance of the alloy sharply decreases. The annealing temperature within the range of 270 to 330 ℃ is the recrystallization stage of the alloy, during which the β (Al3Mg2) phase undergoes dissolution, and the intergranular corrosion resistance of the alloy is rapidly improved, with mechanical properties tending towards the fully annealed state; The annealing temperature within the range of 360 to 540 ℃ is the recrystallization growth stage of the alloy. When the annealing temperature exceeds 540 ℃, the grain coarsening of the alloy is severe, and the mechanical and corrosion properties of the alloy deteriorate. The optimal stabilization annealing temperature range is 90 to 120 ℃, and the optimal O-state annealing temperature is 330 ℃. Overburning occurs when the annealing temperature is higher than 540 ℃.
赵启忠, 李承波, 王春霞, 徐夕, 杨鸿驰, 卢贤业, 闫焱, 孙宜琳, 阮晋德. 特种装备用高强度5A06铝合金板材退火工艺研究[J]. 材料导报, 2025, 39(19): 24090208-5.
ZHAO Qizhong, LI Chengbo, WANG Chunxia, XU Xi, YANG Hongchi, LU Xianye, YAN Yan, SUN Yilin, RUAN Jinde. Study on Annealing Process of High-strength 5A06 Aluminum Alloy Sheet for Special Equipment. Materials Reports, 2025, 39(19): 24090208-5.
1 Fang H J, Liu H, Sun J, et al. Materials Reports, 2023, 37(21), 211 (in Chinese). 房洪杰, 刘慧, 孙杰, 等. 材料导报, 2023, 37(21), 211. 2 Xie H Y, Liu C Y, Zhang B. Materials Science and Engineering A, 2024, 899, 146473. 3 Pan S W, Wang Z D, Li C A, et al. Materials and Design, 2023, 226, 111647. 4 Wang H, Geng H W, Zhou D S, et al. Materials Science and Enginee-ring A, 2020, 771, 138613. 5 Jiao Z H, Lang L H, Zhao X N. Transactions of Nonferrous Metals Society of China, 2021, 31(10), 2939. 6 Wang J, Xiao G Q, Zhang J S. Materials Today Communications, 2023, 36, 106502. 7 Yao X Q, Wen L, Yu Z G, et al. Journal of Alloys and Compounds, 2023, 931, 167544. 8 Guo N, Fu Y L, Wang Y Z, et al. Materials and Design, 2017, 113, 273. 9 Ma L, Sun N, Ma J X, et al. Heat Treatment Of Metals, 2024, 49(6), 100 (in Chinese). 马良, 孙宁, 马军星, 等. 金属热处理, 2024, 49(6), 100. 10 Nie Z R. Transactions of the Nonferrous Metals Society of China, 2003, 13(3), 509. 11 Zhang H, Guo C, Li S, et al. Journal of Materials Research and Technology, 2022, 16, 1202. 12 Li S S, Yue X, Li Q Y, et al. Journal of Materials Research and Technology, 2023, 27, 944. 13 Li C Q, Huang H, Wen S P, et al. Rare Metal Materials and Engineering, 2011, 40(2), 95 (in Chinese). 李振青, 黄晖, 文胜平, 等. 稀有金属材料与工程, 2011, 40(2), 95. 14 Li F L, Li C L, Dai M L, et al. Light Alloy Fabrication Technology, 2015, 46(11), 35 (in Chinese). 李飞龙, 李春流, 戴明銮, 等. 轻合金加工技术, 2015, 46(11), 35. 15 Tang Z Q, Jiang F, Long M J, et al. Applied Surface Science, 2020, 514, 146081. 16 Cao J Y, Wang C Y, Xu M, et al. Materials Reports, 2017, 32(S2), 282 (in Chinese). 曹京宜, 王成业, 徐敏, 等. 材料导报, 2017, 32(S2), 282. 17 Chen X L. Study on corrosion yield behavior and high temperature deformation behavior of Marine high magnesium aluminum alloy. Master's Thesis, Central South University, China, 2009 (in Chinese). 陈星霖. 船用高镁铝合金腐蚀性能屈服行为及高温变形行为研究. 硕士学位论文, 中南大学, 2009. 18 Yang H C, Lu K C, Liu J S, et al. Corrosion & Protection, 2018, 39(2), 122 (in Chinese). 杨鸿驰, 陆科呈, 刘俊生, 等. 腐蚀与防护, 2018, 39(2), 122. 19 Liu G Y. Hot Working Technology, 2014, 43(12), 90 (in Chinese). 刘国元. 热加工技术, 2014, 43(12), 90. 20 Gao S M, Li G Y, Feng Z H. Light Alloy Fabrication Technology, 2001, 29(6), 45 (in Chinese). 高淑明, 李广宇, 冯正海. 轻合金加工技术, 2001, 29(6), 45. 21 Meng L, Zhao Q Z, Li C L, et al. Heat Treatment of Metals. 2014, 39(11), 101 (in Chinese). 蒙玲, 赵启忠, 李春流, 等. 金属热处理, 2014, 39(11), 101. 22 Su M H, Wen S P, Liu Y, et al. Transactions of Materials and Heat Treatment, 2018, 39(8), 29 (in Chinese). 苏美华, 文胜平, 刘勇, 等. 材料热处理学报, 2018, 39(8), 29. 23 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Chemical composition of wrought aluminium and aluminium alloys:GB/T 3190. Standards Press of China, 2008 (in Chinese). 中华人民共和国国家质量监督检验检疫总局. 变形铝及其铝合金化学成分:GB/T 3190. 中国标准出版社, 2008. 24 Zhao Q Z, Song F X, He J X, et al. Light Alloy Fabrication Technology, 2016, 44(4), 29 (in Chinese). 赵启忠, 宋丰轩, 何建贤, 等. 轻合金加工技术, 2016, 44(4), 29. 25 Zhao Q Z, He J X, Yang H C, et al. Light Alloy Fabrication Technology, 2017, 42(2), 24 (in Chinese). 赵启忠, 何建贤, 杨鸿驰, 等. 轻合金加工技术, 2017, 42(2), 24. 26 Zhao Y J, Shi X F, Zhang J X, et al. Light Alloy Fabrication Technology, 2005, 33(5), 31 (in Chinese). 赵永军, 师雪飞, 张景学等. 轻合金加工技术, 2005, 33(5), 29. 27 He J X, Zhao Q Z, J Y, et al. Hot Working Technology, 2016, 23(10), 234 (in Chinese). 何建贤, 赵启忠, 蒋源, 等. 热加工工艺, 2016, 23(10), 234. 28 Shen J J, Chen B, Wan J, et al. Materials Science and Engineering A, 2022, 838, 142821. 29 Tian N, Liu H, Zhang Z, et al. Materials Science and Engineering A, 2024, 893, 146118.