Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24090208-5    https://doi.org/10.11896/cldb.24090208
  金属与金属基复合材料 |
特种装备用高强度5A06铝合金板材退火工艺研究
赵启忠1,2,5, 李承波3,*, 王春霞2, 徐夕3, 杨鸿驰1, 卢贤业1, 闫焱1,5, 孙宜琳4, 阮晋德1
1 广西南南铝加工有限公司,南宁,530031
2 桂林理工大学材料科学与工程学院,广西 桂林 541004
3 湘潭大学机械工程与力学学院,湖南 湘潭 411105
4 中国航空制造技术研究院,北京 110024
5 广西南南铝加工有限公司,广西铝合金材料与加工重点实验室,南宁 530031
Study on Annealing Process of High-strength 5A06 Aluminum Alloy Sheet for Special Equipment
ZHAO Qizhong1,2,5, LI Chengbo3,*, WANG Chunxia2, XU Xi3, YANG Hongchi1, LU Xianye1, YAN Yan1,5, SUN Yilin4, RUAN Jinde1
1 ALG Aluminium Inc., Nanning 530031, China
2 College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
3 School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan, 411105, Hunan, China
4 China Aerospace Manufacturing Technology Research Institute, Beijing, 110024, China
5 ALG Aluminium lnc., Guangxi Key Laboratory of Materials and Processes of Aluminum Alloys, Nanning 530031, China
下载:  全 文 ( PDF ) ( 30059KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过拉伸测试、晶间腐蚀测试、光学显微组织观察以及电子背散射衍射(EBSD)分析等手段,研究了退火温度对特种装备用5A06铝合金冷轧板力学性能、腐蚀性能以及显微组织的影响。研究结果表明:对于5A06铝合金冷轧板材,退火温度低于120 ℃时为稳定化退火阶段,合金的晶间腐蚀性能轻微改善;退火温度在150~240 ℃范围内为回复处理阶段,合金的晶间腐蚀性能急剧下降;退火温度在270~330 ℃区间为合金的再结晶阶段,β(Al3Mg2)相发生回溶,合金的晶间腐蚀性能极速改善,力学性能趋于完全退火态;退火温度在360~540 ℃范围内为合金的再结晶长大阶段,退火温度超过540 ℃时合金的晶粒粗化严重,合金的力学性能和腐蚀性能恶化。最佳稳定化退火温度区间为90~120 ℃,最佳的O态退火温度为330 ℃,退火温度高于540 ℃时发生“过烧”。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵启忠
李承波
王春霞
徐夕
杨鸿驰
卢贤业
闫焱
孙宜琳
阮晋德
关键词:  5A06合金  退火处理  腐蚀性能  再结晶    
Abstract: The effects of annealing temperature on the mechanical properties, corrosion resistance, and microstructure of 5A06 aluminum alloy cold-rolled sheet were studied by tensile testing, intergranular corrosion testing, optical microstructure observation, and electron backscatter diffraction (EBSD) analysis. The research results show that for 5A06 aluminum alloy cold-rolled sheets used in special equipment, when the annealing temperature is below 120 ℃, it's the stabilization annealing stage, and the intergranular corrosion resistance of the alloy is slightly improved. The annealing temperature within the range of 150 to 240 ℃ is the recovery treatment stage, during which the intergranular corrosion resistance of the alloy sharply decreases. The annealing temperature within the range of 270 to 330 ℃ is the recrystallization stage of the alloy, during which the β (Al3Mg2) phase undergoes dissolution, and the intergranular corrosion resistance of the alloy is rapidly improved, with mechanical properties tending towards the fully annealed state; The annealing temperature within the range of 360 to 540 ℃ is the recrystallization growth stage of the alloy. When the annealing temperature exceeds 540 ℃, the grain coarsening of the alloy is severe, and the mechanical and corrosion properties of the alloy deteriorate. The optimal stabilization annealing temperature range is 90 to 120 ℃, and the optimal O-state annealing temperature is 330 ℃. Overburning occurs when the annealing temperature is higher than 540 ℃.
Key words:  5A06 alloy    annealing treatment    corrosion performance    recrystallization
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  TG146.2  
基金资助: 广西科技重大专项(桂科AA22068074;桂科AA23023028) ;科技成果转移转化类(桂科ZY24212043)
通讯作者:  *李承波,博士,湘潭大学机械工程学院副教授、硕士研究生导师。从事航空航天、轨道交通、汽车和3C电子产品用高端铝合金材料的制备、成形、深加工等的基础研究和工程化应用。csulicb@163.com   
作者简介:  赵启忠,高级工程师,广西南南铝加工有限公司研究院(技术中心)热轧技术站站长兼船舶所副所长,从事航空航天、船舶、半导体等特种铝合金材料新产品研究与开发工作。
引用本文:    
赵启忠, 李承波, 王春霞, 徐夕, 杨鸿驰, 卢贤业, 闫焱, 孙宜琳, 阮晋德. 特种装备用高强度5A06铝合金板材退火工艺研究[J]. 材料导报, 2025, 39(19): 24090208-5.
ZHAO Qizhong, LI Chengbo, WANG Chunxia, XU Xi, YANG Hongchi, LU Xianye, YAN Yan, SUN Yilin, RUAN Jinde. Study on Annealing Process of High-strength 5A06 Aluminum Alloy Sheet for Special Equipment. Materials Reports, 2025, 39(19): 24090208-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090208  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24090208
1 Fang H J, Liu H, Sun J, et al. Materials Reports, 2023, 37(21), 211 (in Chinese).
房洪杰, 刘慧, 孙杰, 等. 材料导报, 2023, 37(21), 211.
2 Xie H Y, Liu C Y, Zhang B. Materials Science and Engineering A, 2024, 899, 146473.
3 Pan S W, Wang Z D, Li C A, et al. Materials and Design, 2023, 226, 111647.
4 Wang H, Geng H W, Zhou D S, et al. Materials Science and Enginee-ring A, 2020, 771, 138613.
5 Jiao Z H, Lang L H, Zhao X N. Transactions of Nonferrous Metals Society of China, 2021, 31(10), 2939.
6 Wang J, Xiao G Q, Zhang J S. Materials Today Communications, 2023, 36, 106502.
7 Yao X Q, Wen L, Yu Z G, et al. Journal of Alloys and Compounds, 2023, 931, 167544.
8 Guo N, Fu Y L, Wang Y Z, et al. Materials and Design, 2017, 113, 273.
9 Ma L, Sun N, Ma J X, et al. Heat Treatment Of Metals, 2024, 49(6), 100 (in Chinese).
马良, 孙宁, 马军星, 等. 金属热处理, 2024, 49(6), 100.
10 Nie Z R. Transactions of the Nonferrous Metals Society of China, 2003, 13(3), 509.
11 Zhang H, Guo C, Li S, et al. Journal of Materials Research and Technology, 2022, 16, 1202.
12 Li S S, Yue X, Li Q Y, et al. Journal of Materials Research and Technology, 2023, 27, 944.
13 Li C Q, Huang H, Wen S P, et al. Rare Metal Materials and Engineering, 2011, 40(2), 95 (in Chinese).
李振青, 黄晖, 文胜平, 等. 稀有金属材料与工程, 2011, 40(2), 95.
14 Li F L, Li C L, Dai M L, et al. Light Alloy Fabrication Technology, 2015, 46(11), 35 (in Chinese).
李飞龙, 李春流, 戴明銮, 等. 轻合金加工技术, 2015, 46(11), 35.
15 Tang Z Q, Jiang F, Long M J, et al. Applied Surface Science, 2020, 514, 146081.
16 Cao J Y, Wang C Y, Xu M, et al. Materials Reports, 2017, 32(S2), 282 (in Chinese).
曹京宜, 王成业, 徐敏, 等. 材料导报, 2017, 32(S2), 282.
17 Chen X L. Study on corrosion yield behavior and high temperature deformation behavior of Marine high magnesium aluminum alloy. Master's Thesis, Central South University, China, 2009 (in Chinese).
陈星霖. 船用高镁铝合金腐蚀性能屈服行为及高温变形行为研究. 硕士学位论文, 中南大学, 2009.
18 Yang H C, Lu K C, Liu J S, et al. Corrosion & Protection, 2018, 39(2), 122 (in Chinese).
杨鸿驰, 陆科呈, 刘俊生, 等. 腐蚀与防护, 2018, 39(2), 122.
19 Liu G Y. Hot Working Technology, 2014, 43(12), 90 (in Chinese).
刘国元. 热加工技术, 2014, 43(12), 90.
20 Gao S M, Li G Y, Feng Z H. Light Alloy Fabrication Technology, 2001, 29(6), 45 (in Chinese).
高淑明, 李广宇, 冯正海. 轻合金加工技术, 2001, 29(6), 45.
21 Meng L, Zhao Q Z, Li C L, et al. Heat Treatment of Metals. 2014, 39(11), 101 (in Chinese).
蒙玲, 赵启忠, 李春流, 等. 金属热处理, 2014, 39(11), 101.
22 Su M H, Wen S P, Liu Y, et al. Transactions of Materials and Heat Treatment, 2018, 39(8), 29 (in Chinese).
苏美华, 文胜平, 刘勇, 等. 材料热处理学报, 2018, 39(8), 29.
23 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Chemical composition of wrought aluminium and aluminium alloys:GB/T 3190. Standards Press of China, 2008 (in Chinese).
中华人民共和国国家质量监督检验检疫总局. 变形铝及其铝合金化学成分:GB/T 3190. 中国标准出版社, 2008.
24 Zhao Q Z, Song F X, He J X, et al. Light Alloy Fabrication Technology, 2016, 44(4), 29 (in Chinese).
赵启忠, 宋丰轩, 何建贤, 等. 轻合金加工技术, 2016, 44(4), 29.
25 Zhao Q Z, He J X, Yang H C, et al. Light Alloy Fabrication Technology, 2017, 42(2), 24 (in Chinese).
赵启忠, 何建贤, 杨鸿驰, 等. 轻合金加工技术, 2017, 42(2), 24.
26 Zhao Y J, Shi X F, Zhang J X, et al. Light Alloy Fabrication Technology, 2005, 33(5), 31 (in Chinese).
赵永军, 师雪飞, 张景学等. 轻合金加工技术, 2005, 33(5), 29.
27 He J X, Zhao Q Z, J Y, et al. Hot Working Technology, 2016, 23(10), 234 (in Chinese).
何建贤, 赵启忠, 蒋源, 等. 热加工工艺, 2016, 23(10), 234.
28 Shen J J, Chen B, Wan J, et al. Materials Science and Engineering A, 2022, 838, 142821.
29 Tian N, Liu H, Zhang Z, et al. Materials Science and Engineering A, 2024, 893, 146118.
[1] 陈黎松, 刘金学, 解海涛, 刘志鹏, 宋新宇, 肖阳, 关绍康, 何季麟. 退火工艺对Mg-8Li-3Al-2Zn合金挤压板材显微组织与力学性能的影响[J]. 材料导报, 2025, 39(7): 24020152-5.
[2] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[3] 郑惠泽, 何建丽, 高晨鑫, 章海明, 向雨欣. WE43镁合金温热压缩下织构演变及再结晶行为[J]. 材料导报, 2025, 39(5): 24020054-7.
[4] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[5] 梁文杰, 董强胜, 章晓波. 增材制造铝合金组织结构与性能研究进展[J]. 材料导报, 2025, 39(19): 24100182-15.
[6] 郭廷彪, 侯建德, 冯瑞, 姚子鹏, 郑双双, 张国庆. 室温C-ECAP纯铝组织演变及强韧化机理研究[J]. 材料导报, 2025, 39(12): 24050232-6.
[7] 赵言, 唐建国, 张勇, 郑许, 赵辉. 应变速率对7065铝合金等温压缩软化机制的影响[J]. 材料导报, 2024, 38(8): 22080187-6.
[8] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[9] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[10] 张京京, 易幼平, 黄始全, 何海林, 董非, 王当. 2195铝合金中温变形条件下的静态再结晶机理及动力学[J]. 材料导报, 2024, 38(4): 22040369-9.
[11] 钟丽萍, 路迢迢, 孙林超, 张梅, 王亮亮, 王永建. 镁合金多向锻造技术的研究现状与展望[J]. 材料导报, 2024, 38(23): 23070200-11.
[12] 颜蜀雋, 谭雅莉, 庞忠荣, 万鹏颖, 齐福刚. 六方氮化硼负载纳米氧化铝复合填料的制备及改性环氧涂层的防腐性能研究[J]. 材料导报, 2024, 38(20): 22110089-6.
[13] 孙文明, 李韶林, 宋克兴, 王强松, 丁宗业, 朱莹莹. 铸态Cu-1.16Ni-0.36Cr合金热变形行为及热加工图[J]. 材料导报, 2024, 38(2): 22040205-8.
[14] 全琪炜, 刘向兵, 赵文增, 吴奕初, 徐超亮, 张晏玮, 李远飞, 钱王洁, 贾文清, 尹建. Xe离子辐照后Zr-4和Zr-1Nb合金的力学和耐腐蚀性能研究[J]. 材料导报, 2024, 38(18): 23020010-5.
[15] 王同波, 李伯龙, 亓鹏, 王云鹏, 莫永达, 娄花芬. 含铒近α型高温钛合金中α相的动/静态球化机制[J]. 材料导报, 2024, 38(17): 23100083-6.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed