Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24110095-10    https://doi.org/10.11896/cldb.24110095
  金属与金属基复合材料 |
固体氧化物燃料电池Fe-Cr金属支撑体研究进展
朱志刚1,2, 宋琛2,*, 董东东2, 刘太楷2, 文魁2, 邓畅光2, 宁洪龙1,3, 刘敏2
1 华南理工大学材料科学与工程学院,发光材料与器件国家重点实验室,广州 510641
2 广东省科学院新材料研究所,现代材料表面工程技术国家工程实验室,广东省现代表面工程技术重点实验室,粤港现代表面工程技术联合实验室,广州 510650
3 东莞理工学院国际微电子学院,广东 东莞 523808
Research Progress of Fe-Cr Metal Support in Solid Oxide Fuel Cells
ZHU Zhigang1,2, SONG Chen2,*, DONG Dongdong2, LIU Taikai2, WEN Kui2, DENG Changguang2, NING Honglong1,3, LIU Min2
1 School of Materials Science and Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, China
2 Institute of New Materials, Guangdong Academy of Sciences, National Engineering Laboratory of Modern Materials Surface Engineering Technology, Guangdong Provincial Key Laboratory of Modern Surface Engineering Technology, Guangdong-Hong Kong Joint Laboratory of Modern Surface Engineering Technology, Guangzhou 510650, China
3 International School of Microelectronics, Dongguan University of Technology, Dongguan 523808, Guangdong, China
下载:  全 文 ( PDF ) ( 30547KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属支撑型固体氧化物燃料电池具有启动速度快、机械强度高、成本低廉等优点,在移动领域和固定式发电系统具有极大的应用前景。Fe-Cr合金因良好适配性和高性价比成为常用的金属支撑体材料,然而其在高温工况下氧化腐蚀、元素互扩散、与陶瓷发电层热膨胀系数不匹配等问题影响电池的输出性能和长期稳定性。本综述主要归纳了Fe-Cr支撑体性能的影响因素和改性方法,首先介绍了常用材料的特点以及决定热膨胀系数的关键因素,讨论了金属支撑体的高温力学性能及其调控手段,分析了支撑体结构设计对电池输出性能的影响;然后总结了制备工艺与多孔支撑体微观组织的关系,阐述了Fe-Cr金属支撑体氧化行为和元素扩散问题及其解决措施。最后展望了Fe-Cr金属支撑体存在问题和发展趋势,为高功率、长寿命电池研发优化提供思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱志刚
宋琛
董东东
刘太楷
文魁
邓畅光
宁洪龙
刘敏
关键词:  固体氧化物燃料电池  Fe-Cr金属支撑体  材料与结构  制备工艺  氧化及元素扩散    
Abstract: Metal-supported solid oxide fuel cells have great application potential prospects in mobile fields and fixed power generation systems due to its advantages of fast start-up speed, high mechanical strength and low cost. Fe-Cr alloy has become a commonly used metal support mate-rial because of its good adaptability and high-cost performance. However, its oxidation corrosion, element inter-diffusion and thermal expansion coefficient mismatch with the ceramic power generation layer under high-temperature conditions affects the output performance and long-term stability of the cell. This review concentrates on the factors and modification methods that affect the performance of Fe-Cr supports. Firstly, the cha-racteristics of commonly used materials and the key factors that determine the thermal expansion coefficient are introduced. The high-temperature mechanical properties of metal supports and their regulation are discussed. The influence of support structure design on cell output performance is analyzed. Then, the relationship between the preparation process and the microstructure of the porous support is summarized. The oxidation behavior and element inter-diffusion problems of Fe-Cr metal supports are discussed, and the specific solutions are summarized. Finally, the current problems and future development trends of Fe-Cr metal supports have been prospected to provide references and ideas for the research and development of high-power and long-life SOFCs.
Key words:  solid oxide fuel cell    Fe-Cr metal support    materials and structure    preparation process    oxidation and element diffusion
发布日期:  2025-10-27
ZTFLH:  TB383  
基金资助: 国家重点研发计划(2023YFE0108000);国家自然科学基金(52201069);中国科协青年人才托举项目(2022QNRC001);广东省科学院项目(2022GDASZH-2022010201;2022GDASZH-2022010203-003;2022GDASZH-2022030501-06);广东省科学院新材料研究所专项资金(2023GINMZX-202301020104);广东省科技计划(2023B1212060045;2023B1212120008)
通讯作者:  *宋琛,博士,广东省科学院新材料研究所高级工程师。长期从事热喷涂制备金属支撑型固体氧化物燃料电池研究工作。phd.songchen@gmail.com   
作者简介:  朱志刚,华南理工大学材料科学与工程学院在读博士研究生。目前主要研究领域为金属支撑型固体氧化物燃料电池。
引用本文:    
朱志刚, 宋琛, 董东东, 刘太楷, 文魁, 邓畅光, 宁洪龙, 刘敏. 固体氧化物燃料电池Fe-Cr金属支撑体研究进展[J]. 材料导报, 2025, 39(20): 24110095-10.
ZHU Zhigang, SONG Chen, DONG Dongdong, LIU Taikai, WEN Kui, DENG Changguang, NING Honglong, LIU Min. Research Progress of Fe-Cr Metal Support in Solid Oxide Fuel Cells. Materials Reports, 2025, 39(20): 24110095-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110095  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24110095
1 Fallah Vostakola M, Amini Horri B. Energies, 2021, 14(5), 1280.
2 Liu Runze, Zhou Fen, Wang Qingchun, et al. Materials Reports, 2021, 35(S1), 29(in Chinese).
刘润泽, 周芬, 王青春, 等. 材料导报, 2021, 35(S1), 29.
3 Kuterbekov K A, Nikonov A V, Bekmyrza K Z, et al. Nanomaterials, 2022, 12(7), 1059.
4 Singh M, Zapp D, Comini E. International Journal of Hydrogen Energy, 2021, 46(54), 27643.
5 Yu Shancheng, Chen Leyi, Wu Xiaobo, et al. Journal of Ceramics, 2021, 42 (1), 96(in Chinese).
余善成, 陈乐易, 吴晓波, 等. 陶瓷学报. 2021, 42 (1), 96.
6 Zhou Z, Nadimpalli V K, Pedersen D B, et al. Materials, 2021, 14(11), 3139.
7 Du K, Song C, Yuan B, et al. Journal of Power Sources, 2024, 621, 235298.
8 Zhang M, Song C, Liu M, et al. Ceramics International, 2024, 50(21, Part C), 44391.
9 Zhu Z, Ning H, Song C, et al. Journal of Thermal Spray Technology, 2024, 33(5), 1725.
10 Opakhai S, Kuterbekov K. Energies, 2023, 16, 4700.
11 Yang Z G, Paxton D M, Weil K S, et al. United States: N. p: Web, 2002, 10, 2172.
12 Du Ke, Song Chen, Yu Min, et al. China Surface Engineering, 2022, 35(1), 25(in Chinese)
杜柯, 宋琛, 余敏, 等. 中国表面工程, 2022, 35(1), 25.
13 Manjuna N, Santhy K, Rajasekaran B. International Journal of Hydrogen Energy, 2023, 48(81), 31767.
14 Jeong S, Yamaguchi T, Okamoto M, et al. ACS Applied Energy Materials, 2020, 3(1), 1222.
15 Mao J, Wang E, Wang H, et al. Renewable and Sustainable Energy Reviews, 2023, 185, 113597.
16 Matus Y B, De Jonghe L C, Jacobson C P, et al. Solid State Ionics, 2005, 176(5), 443.
17 Wang Pi, Song Chen, Dong Dongdong, et al. Materials Reports, 2025, 39(1), 119(in Chinese).
王丕, 宋琛, 董东东, 等. 材料导报, 2025, 39(1), 119.
18 Marr M, Kesler O. Surface and Coatings Technology, 2013, 216, 289.
19 Marr M, Kesler O. Journal of Thermal Spray Technology, 2012, 21(6), 1334.
20 Tucker M C. Journal of Power Sources, 2010, 195(15), 4570.
21 Tucker M C, Jacobson C P, De Jonghe L C, et al. Journal of Power Sources, 2006, 160(2), 1049.
22 Rojek-Wöckner V A, Opitz A K, Brandner M, et al. Journal of Power Sources, 2016, 328, 65.
23 Dogdibegovic E, Wang R, Lau G Y, et al. Journal of Power Sources, 2019, 437, 226935.
24 Tsai C H, Hwang C S, Chang C L, et al. Fuel Cells, 2018, 18(6), 800.
25 Yang ShengFu, Tsai ChunHuang, Chang ChunLiang, et al. In:Proceeding of the 42nd International Conference on Advanced Ceramics and Compo-sites, Florida, 2019, pp. 177.
26 Fergus J W. Materials Science and Engineering: A, 2005, 397(1), 271.
27 Garcia-Fresnillo L, Niewolak L, Quadakkers W J, et al. Oxidation of Metals, 2018, 89(1), 61.
28 Yoo Y, Wang Y, Deng X, et al. Journal of Power Sources, 2012, 215(Oct. 1), 307.
29 Koszelow D, Makowska M, Drewniak A, et al. Metallurgical and Materials Transactions A, 2023, 54(6), 2244.
30 Pirou S, Talic B, Brodersen K, et al. Journal of Materials Research and Technology, 2023, 48(29), 11017.
31 Gao P, Bolon A, Taneja M, et al. Solid State Ionics, 2017, 300, 1.
32 Ju Chunyan. Mechanical Research & Application, 2020, 33(6), 85(in Chinese).
居春艳. 机械研究与应用, 2020, 33(6), 85.
33 Cho S, Lee J, Shin S, et al. Journal of Materials Research and Technology, 2023, 25, 7241.
34 Bittner A, Kanas N,Hinterding R, et al. International Journal of Hydrogen Energy, 2019, 44(26), 13768.
35 Reisert M, Berova V, Aphale A, et al. International Journal of Hydrogen Energy, 2020, 45(55), 30882.
36 Leah R T, Bone A, Hammer E, et al. ECS Transactions, 2017, 78(1), 87.
37 Fu Tao, Gao Jiutao, Gao Yuan, et al. Thermal Spray Technology, 2022, 14(1), 28(in Chinese).
富涛, 高九涛, 高圆, 等. 热喷涂技术, 2022, 14(1), 28.
38 Arevalo-Quintero O, Kesler O. Fuel Cells, 2018, 18(4), 466.
39 Franco T, Schibinger K, Ilhan Z, et al. ECS Transactions, 2007, 7(1), 771.
40 Esposito L, Boccaccini D N, Pucillo G P, et al. Materials Science and Engineering: A, 2017, 691, 155.
41 Udomsilp D, Rechberger J, Neubauer R, et al. Cell Reports Physical Science, 2020, 1(6), 100072.
42 Nenning A, Bischof C, Fleig J, et al. Energies, 2020, 13(4), 987.
43 Bance A P, Brandan A B, Girvan B A, et al. Journal of Power Sources, 2004, 131(1-2), 86.
44 Froitzheim J, Meier G H, Niewolak L, et al. Journal of Power Sources, 2008, 178(1), 163.
45 Vayyala A, Povstugar I, Galiullin T, et al. Oxidation of Metals, 2019, 92(5), 471.
46 Kesler O, Cuglietta M, Harris J, et al. ECS Transactions, 2013, 57(1), 491.
47 Zhou Yucun, Ye Xiaofeng, Wang Shaorong. Journal of Inorganic Materials, 2016, 31(7), 769(in Chinese).
周玉存, 叶晓峰, 王绍荣. 无机材料学报, 2016, 31(7), 769.
48 Franco T, Henne R, Lang M, et al. Proceedings of the Electrochemical Society, 2003, 7, 923.
49 Hu B, Lau G, Song D, et al. Journal of Power Sources, 2023, 555, 232402.
50 Epstein N. Chemical Engineering Science, 1989, 44(3), 777.
51 Nielsen J, Persson Å H, Muhl T T, et al. Journal of the Electrochemical Society, 2018, 165(2), F90.
52 Hwang C S, Tsai C H, Hwang T J, et al. Fuel Cells, 2016, 16(2), 244.
53 Lyu Haipeng. Preparation and performance research of metal-supported solid oxide fuel cells. Ph. D. Thesis, China University of Mining and Technology, China, 2023(in Chinese).
吕海鹏. 金属支撑固体氧化物燃料电池的制备及其性能研究. 博士学位论文, 中国矿业大学, 2023.
54 Dogdibegovic E, Wang R, Lau G Y, et al. Journal of Power Sources, 2019, 410-411, 91.
55 Yamaguchi Y, Sumi H, Takahashi H, et al. ECS Transactions, 2019, 91(1), 909.
56 Dogdibegovic E, Cheng Y, Shen F, et al. Journal of Power Sources, 2021, 489, 229439.
57 Tomov R I, Krauz M, Tluczek A, et al. Materials for Renewable and Sustainable Energy, 2015, 4(3), 14.
58 Fu S, Zhang J, Xu K, et al. Frontiers in Energy Research, 2023, 11, 1127900.
59 Lin J, Li H, Wang W, et al. Journal of the American Ceramic Society, 2023, 106(1), 68.
60 Shin W, Yamaguchi Y, Horie M, et al. Ceramics International, 2023, 49(22, Part B), 36478.
61 Morán-Ruiz A, Vidal K, Larrañaga A, et al. International Journal of Hydrogen Energy, 2016, 41(38), 17053.
62 Leah R T, Bone A, Lankin M, et al. ECS Transactions, 2015, 68(1) 95.
63 Zhang S L, Li C X, Li C J, et al. Journal of Power Sources, 2016, 323, 1.
64 Wang Y P, Li C X, Gao J T, et al. International Journal of Green Energy, 2022, 19(8), 818.
65 Xu K, Zhu L. Metals, 2024, 14(4), 475.
66 Sarasketa-Zabala E, Otaegi L, Rodriguez-Martinez L M, et al. Solid State Ionics, 2012, 222-223, 16.
67 Dheeradhada V S, Cao H, Alinger M J. Journal of Power Sources, 2011, 196(4), 1975.
68 Molin S, Kusz B, Gazda M, et al. Journal of Power Sources, 2008, 181(1), 31.
69 Reddy M J, Svensson J E, Froitzheim J. Corrosion Science, 2021, 190, 109671.
70 Zhang W, Li J,Yang J, et al. International Journal of Hydrogen Energy, 2016, 41(47), 22246.
71 Xu K, Chen Z, Bao C, et al. International Journal of Hydrogen Energy, 2024, 73, 577.
72 Karczewski J, Dunst K J, Jasinski P, et al. Surface Coatings Technology, 2015, 261, 385.
73 Jeong H, Roehrens D, Bram M. Materials Letters, 2020, 258, 126794.
74 Dayaghi A M, Kim K J, Kim S J, et al. Journal of Power Sources, 2017, 360, 488.
75 Stefan E, Neagu D, Blennow Tullmar P, et al. Materials Research Bulletin, 2017, 89, 232.
76 Stange M, Denonville C, Larring Y, et al. International Journal of Hydrogen Energy, 2017, 42(17), 12485.
77 Wen Jing, Song Chen, Deng Ziqian, et al. Materials Research and Application, 2020, 14(2), 116(in Chinese).
温靖, 宋琛, 邓子谦, 等. 材料研究与应用, 2020, 14(2), 116.
78 Zhu Zhigang, Song Chen, Hu Yongjun, et al. Materials Research and Application, 2023, 17(2), 329(in Chinese).
朱志刚, 宋琛, 胡永俊, 等. 材料研究与应用, 2023, 17(2), 329.
79 Pham H C, Taniguchi S, Inoue Y, et al. Fuel Cells, 2017, 17(1), 83.
80 Piccardo P, Spotorno R, Geipel C. Energies, 2022, 15(10), 3548.
81 Yang S, Wang F, Che Q, et al. Journal of Alloys and Compounds, 2022, 921, 166085.
82 Welander M M, Hu B, Tucker M C. International Journal of Hydrogen Energy, 2022, 47(21), 11261.
83 Harthoj A, Alimadadi H, Holt T, et al. Journal of the Electrochemical Society, 2015, 162(4), F387.
84 Macauley C, Gannon P, Deibert M, et al. International Journal of Hydrogen Energy, 2011, 36(7), 4540.
85 Jemai R, Wederni M A, Amorri O, et al. Ceramics International, 2022, 48(10), 14050.
86 Kim K J, Kim S J, Choi G M. Journal of Power Sources, 2016, 307, 385.
[1] 姜文平, 庞兴志, 何娟霞, 杨文超, 湛永钟. 骨修复用钛合金-羟基磷灰石复合材料的制备工艺及性能综述[J]. 材料导报, 2025, 39(5): 24090227-14.
[2] 王鹤龙, 史贵丙, 王丽, 李宗臻. 高饱和磁通密度铁基非晶纳米晶磁粉芯的研究进展[J]. 材料导报, 2025, 39(3): 24010092-9.
[3] 谭婷, 李春生, 王冠旭, 刘彩玲, 王嘉蓉, 杨征. 弛豫时间分布技术在固体氧化物燃料电池中的应用[J]. 材料导报, 2025, 39(19): 24090247-8.
[4] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[5] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[6] 黄玺, 张亮, 王曦, 陈晨, 卢晓. 电子封装用纳米级无铅钎料的研究进展[J]. 材料导报, 2024, 38(23): 23080181-13.
[7] 李雪伍, 杜少盟, 闫佳洋, 石甜. 铝合金超疏水表面制备方法及防腐应用研究现状[J]. 材料导报, 2024, 38(19): 23030276-10.
[8] 张伟, 杨旭, 陈晓通, 任军强, 卢学峰. 纳米结构金属材料制备工艺及强化稳定方式研究进展[J]. 材料导报, 2023, 37(S1): 23010123-16.
[9] 符明君, 张勇, 张耿飞, 王凯, 贾致远, 王娜. 钼及钼合金改性硅化物高温抗氧化涂层研究现状[J]. 材料导报, 2023, 37(3): 21030219-8.
[10] 张永芳, 黎亮, 董丽虹, 王海斗, 王朋, 谢向宇. RFID传感标签制备工艺研究进展[J]. 材料导报, 2023, 37(22): 22030149-10.
[11] 刘军, 李振林, 张伟卓, 靳贺松, 邢锋. 工业固体废弃物材料制作冷粘结人造轻骨料的研究进展[J]. 材料导报, 2023, 37(18): 21090269-18.
[12] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[13] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[14] 刘小伟, 孙宁, 刘湘林, 金芳军. 基于LnBaCo2O5+δ双钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(8): 20080292-6.
[15] 郭涛, 李硕, 姚雅萱, 南波航, 徐桂英, 任玲玲. Bi-Te基薄膜热电材料的研究进展[J]. 材料导报, 2022, 36(4): 20040035-13.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed