Application of Distribution of Relaxation Times Technique in Solid Oxide Fuel Cells
TAN Ting1,*, LI Chunsheng2, WANG Guanxu2, LIU Cailing2, WANG Jiarong2, YANG Zheng1,*
1 PetroChina Shenzhen New Energy Research Institute Company Limited, Shenzhen 518000, Guangdong, China 2 CNPC Jichai Power Company Limited, Jinan 250000, China
Abstract: Solid oxide fuel cells (SOFCs), as efficient energy storage and conversion systems, are poised to gradually change traditional energy utilization methods. However, due to the complexity of electrochemical reactions in SOFC electrodes, gaining a deep understanding of the reaction processes and analyzing degradation mechanisms remain challenging. Advanced analysis techniques are required to address this issue. The distribution of relaxation times (DRT) has recently garnered significant attention as a precise analysis tool for the electrochemical characteristics of SOFC systems. By deconvoluting electrochemical impedance spectroscopy (EIS) data, the DRT technique extracts time-scale characteristics of the electrochemical system, identifies appropriate equivalent circuits, and quantifies key physical parameters. This provides valuable guidance for selecting and optimizing electrode materials and microstructures. This review outlines the principles and analytical process of the DRT technique, while showcasing its practical applications and advantages in the separation and attribution of electrode polarization, as well as in the analysis of cell degradation in the SOFC field.
谭婷, 李春生, 王冠旭, 刘彩玲, 王嘉蓉, 杨征. 弛豫时间分布技术在固体氧化物燃料电池中的应用[J]. 材料导报, 2025, 39(19): 24090247-8.
TAN Ting, LI Chunsheng, WANG Guanxu, LIU Cailing, WANG Jiarong, YANG Zheng. Application of Distribution of Relaxation Times Technique in Solid Oxide Fuel Cells. Materials Reports, 2025, 39(19): 24090247-8.
1 Muhammad Rafique, Huma Nawaz, M. Shahid Rafique, et al. International Journal of Energy Research, 2018, 43(7), 2423. 2 Shuai He, San Ping Jiang. Progress in Natural Science:Materials International, 2021, 31(3), 341. 3 Jiapeng Liu, Francesco Ciucci. Journal of the Electrochemical Society, 2020, 167(2), 026506. 4 Yu Chen, YongMan Choi, Seonyoung Yoo, et al. Joule, 2018, 2(5), 938. 5 Zhu T, Troiani H E, Mogni L V , et al. Joule, 2018, 2(3), 478. 6 Sebastian Dierickx, André Weber, Ellen Ivers-Tiffée. Electrochimica Acta, 2020, 355, 136764. 7 Yanxiang Zhang, Yu Chen, Mufu Yan, et al. Journal of Power Sources, 2015, 283, 464. 8 Yanxiang Zhang, Yu Chen, Fanglin Chen. Journal of Power Sources, 2015, 277, 277. 9 Schichlein H, Müller A C, Voigts M, et al. Journal of Applied Electrochemistry, 2002, 32(8), 875. 10 Kournoutis V C, Tietz F, Bebelis S. Fuel Cells, 2009, 9(6), 852. 11 Johan Tallgren, Carlos Boigues Muñoz, Jyrki Mikkola, et al. ECS Tran-sactions, 2017, 78(1), 2141. 12 Federica Torrigino, Fabian Grimm, Jürgen Karl, et al. Heliyon, 2024, 10(12), e32509. 13 Garcés D, Wang H, Barnett S A, et al. Journal of Materials Chemistry A, 2018, 6(34),16699. 14 Zhihong Du, Hailei Zhao, Sha Yi, et al. ACS Nano, 2016, 10(9), 8660. 15 Schichlein H, Feuerstein M, Müller A, et al. ECS Proceedings Volumes, 1999, 19(1), 1069. 16 Boukamp B A, Rolle A. Solid State Ionics, 2018, 314, 103. 17 Yanxiang Zhang, Yu Chen, Mei Li, et al. Journal of Power Sources, 2016, 308, 1. 18 Klotz D, Schönleber M, Schmidt J P, et al. Electrochimica Acta, 2011, 56(24), 8763. 19 Markus Nohl, Gaurav Raut, Stephanie Elisabeth Wolf, et al. ECS Tran-sactions, 2021, 103(1), 1403. 20 Mitra Ghamarinia, Alireza Babaei, Cyrus Zamani, et al. Chemical Engineering Journal Advances, 2023, 15, 100503. 21 Kobayashi K, Suzuki T S. Electrochemistry, 2022, 90(1), 017004. 22 Adeleke Maradesa, Baptiste Py, Jake Huang, et al. Joule, 2024, 8(7), 1958. 23 Tiff Ivers, Eacute, Ellen E, et al. Journal of the Ceramic Society of Japan, 2017, 125(4), 193. 24 Christian Plank, Tom Rüther, Leonard Jahn, et al. Journal of Power Sources, 2024, 594, 233845. 25 Lu M Y, Railsback J G, Wang H, et al. Journal of Materials Chemistry A, 2019, 7(22), 13531. 26 Hossein Madi, Andrea Lanzini, Davide Papurello, et al. Journal of Power Sources, 2016, 326, 349. 27 Tinghei Wan, Mattia Saccoccio, Chi Chen, et al. Electrochimica Acta, 2015, 184, 483. 28 Osinkin D A. Journal of Power Sources, 2022, 527, 231120. 29 Osinkin D A. Electrochimica Acta, 2021, 372, 137858. 30 Wang T, Zhang T, Sun Y N, et al. Chinese Journal of Power Sources, 2024, 48(5), 908 (in Chinese). 王涛, 张涛, 孙元娜, 等. 电源技术, 2024, 48(5), 908. 31 Williams N J, Osborne C, Seymour I D, et al. Electrochemistry Communications, 2023, 149, 107458. 32 Osinkin D A. Journal of Power Sources, 2023, 571, 233085. 33 Jieshan Chang, Meihua Jiao, Panpan Zhang, et al. Electrochimica Acta, 2024, 498, 144615. 34 Carlos Boigues Muñoz, Davide Pumiglia, F. Santoni, et al. ECS Tran-sactions, 2015, 68(1), 2227. 35 Chenghao Yang, Zhibin Yang, Chao Jin, et al. Advanced Materials, 2012, 24(11), 1439. 36 Yin W, Chuang S S C. Catalysis Communications, 2017, 102, 62. 37 Bin Chen, Haoran Xu, Yuan Zhang, et al. International Journal of Hydrogen Energy, 2019, 44(29), 15313. 38 Kusnezoff M, Trofimenko N, Muller M, et al. Materials (Basel), 2016, 9(11), 906. 39 Haolong Li, Wei Wei, Fengxia Liu, et al. Energy, 2023, 267, 126482. 40 Wenchao Song, Zhenkai Ma, Yang Yang, et al. International Journal of Hydrogen Energy, 2020, 45(28), 14480. 41 Xiuan Xi, Xuewan Wang, Yun Fan, et al. Journal of Power Sources, 2021, 482, 228981. 42 Chunming Xu, Wang Sun, Rongzheng Ren, et al. Applied Catalysis B:Environmental, 2021, 282, 119553. 43 Yu Chen, Ye Lin, Yanxiang Zhang, et al. Nano Energy, 2014, 8, 25. 44 Yu Chen, Yanxiang Zhang, Jeffrey Baker, et al. ACS Applied Materials & Interfaces, 2014, 6(7), 5130. 45 Yong Guan, Yunhui Gong, Wenjie Li, et al. Journal of Power Sources, 2011, 196(24), 10601. 46 Qianqian Ji, Lei Bi, Jintao Zhang, et al. Energy & Environmental Science, 2020, 13(5), 1408. 47 Arsalan Zare, Hirad Salari, Alireza Babaei, et al. Journal of Electroanalytical Chemistry, 2023, 936, 117376. 48 Yu Y, Ludwig K F, Woicik J C, et al. ACS Applied Materials & Interfaces, 2016, 8(40), 26704. 49 Nadeem M, Li Y, Bouwmeester H J M, et al. International Journal of Hydrogen Energy, 2020, 45(46), 25299. 50 Shamim Shahrokhi, Alireza Babaei, Cyrus Zamani. International Journal of Hydrogen Energy, 2018, 43(52), 23091. 51 Rui Guan, Zhen Wang, Huan Xu, et al. ACS Applied Energy Materials, 2022, 5(1), 481. 52 Ali Soltanizade, Alireza Babaei, Abolghasem Ataie, et al. Journal of Applied Electrochemistry, 2019, 49(11), 1113. 53 Zohreh Akbari, Alireza Babaei. Journal of the American Ceramic Society, 2020, 103(2), 1332. 54 Yang Zhang, Leyu Shen, Yuhao Wang, et al. Journal of Materials Che-mistry A, 2022, 10(7), 3495. 55 Hirofumi Sumi, Takayuki Ohshiro, Masanobu Nakayama, et al. Electrochimica Acta, 2015, 184, 403. 56 Ziwei Zheng, Junmeng Jing, Ze Lei, et al. International Journal of Hydrogen Energy, 2022, 47(41), 18139. 57 Kwangjin Park, Sungoh Yu, Joongmyeon Bae, et al. International Journal of Hydrogen Energy, 2010, 35(16), 8670. 58 Shi W, Lyu Z, Han M. ECS Transactions, 2019, 91(1), 791. 59 Bowen Song, Enrique Ruiz-Trejo, Antonio Bertei, et al. Journal of Power Sources, 2018, 374, 61. 60 Hsiao Y C, Selman J R. Solid State Ionics, 1997, 98(1), 33. 61 Zacharie Wuillemin, Yannik Antonetti, Cédric Beetschen, et al. ECS Transactions, 2013, 57(1), 561. 62 Yuhdai Kikuchi, Junko Matsuda, Yuya Tachikawa, et al. ECS Transactions, 2017, 78(1), 1253. 63 Zewei Lyu, Hangyue Li, Minfang Han, et al. Journal of Power Sources, 2022, 538, 231569. 64 Suhas Nuggehalli Sampathkumar, Philippe Aubin, Karine Couturier, et al. International Journal of Hydrogen Energy, 2022, 47(18), 10175. 65 Jin D, Lu Y, Yu Y T, et al. Materials Research and Application, 2023, 17(2), 220 (in Chinese). 金盾, 陆越, 余喻天, 等. 材料研究与应用, 2023, 17(2), 220. 66 Hirofumi Sumi, Hiroyuki Shimada, Yuki Yamaguchi, et al. Electrochimica Acta, 2020, 339, 135913. 67 Endler C, Leonide A, Weber A, et al. Journal of the Electrochemical Society, 2010, 157(2), B292.