Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24090247-8    https://doi.org/10.11896/cldb.24090247
  无机非金属及其复合材料 |
弛豫时间分布技术在固体氧化物燃料电池中的应用
谭婷1,*, 李春生2, 王冠旭2, 刘彩玲2, 王嘉蓉2, 杨征1,*
1 中石油深圳新能源研究院有限公司,广东 深圳 518000
2 中国石油集团济柴动力有限公司,济南 250000
Application of Distribution of Relaxation Times Technique in Solid Oxide Fuel Cells
TAN Ting1,*, LI Chunsheng2, WANG Guanxu2, LIU Cailing2, WANG Jiarong2, YANG Zheng1,*
1 PetroChina Shenzhen New Energy Research Institute Company Limited, Shenzhen 518000, Guangdong, China
2 CNPC Jichai Power Company Limited, Jinan 250000, China
下载:  全 文 ( PDF ) ( 12449KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 固体氧化物燃料电池(SOFC)作为高效的能量存储和转换系统,将逐步改变传统能源利用方式。然而,SOFC电极反应复杂,深度理解和分析电化学反应过程及其衰减机理较为困难,需要更先进的分析手段来解决这一问题。弛豫时间分布(DRT)技术是近年来备受瞩目的一种电化学分析方法,可以精确地评估SOFC系统中的电化学反应特性。DRT技术是通过回归DRT模型,对电化学阻抗谱(EIS)数据进行解卷积,然后提取电化学系统的时间尺度特性,确定合适的等效电路并量化关键物理参数,从而为选择和优化电极材料和微观结构提供指导的一种分析与研究手段。本文介绍了DRT技术的原理和分析过程,并通过介绍其在SOFC领域中的具体应用实例,展示了DRT方法在电极极化分离和归属方面以及电池衰减分析中的应用和优势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭婷
李春生
王冠旭
刘彩玲
王嘉蓉
杨征
关键词:  弛豫时间分布技术  固体氧化物燃料电池  阳极  阴极  衰减机理    
Abstract: Solid oxide fuel cells (SOFCs), as efficient energy storage and conversion systems, are poised to gradually change traditional energy utilization methods. However, due to the complexity of electrochemical reactions in SOFC electrodes, gaining a deep understanding of the reaction processes and analyzing degradation mechanisms remain challenging. Advanced analysis techniques are required to address this issue. The distribution of relaxation times (DRT) has recently garnered significant attention as a precise analysis tool for the electrochemical characteristics of SOFC systems. By deconvoluting electrochemical impedance spectroscopy (EIS) data, the DRT technique extracts time-scale characteristics of the electrochemical system, identifies appropriate equivalent circuits, and quantifies key physical parameters. This provides valuable guidance for selecting and optimizing electrode materials and microstructures. This review outlines the principles and analytical process of the DRT technique, while showcasing its practical applications and advantages in the separation and attribution of electrode polarization, as well as in the analysis of cell degradation in the SOFC field.
Key words:  distribution of relaxation time    solid oxide fuel cell    anode    cathode    degradation mechanism
发布日期:  2025-09-24
ZTFLH:  TM911.4  
基金资助: 中国石油集团济柴动力有限公司科技项目(F-G60024L0);中国石油天然气集团有限公司基础性前瞻性科技专项(2023ZZ1204)
通讯作者:  *谭婷,博士,2024年入职中石油深圳新能源研究院有限公司。目前主要研究领域为固体氧化物燃料电池/电解池。tanting0817@163.com
杨征,博士,中石油深圳新能源研究院有限公司研究员。目前主要从事固体氧化物燃料电池/电解池方面的研究工作。zheng.yang@petrochina.com.cn   
引用本文:    
谭婷, 李春生, 王冠旭, 刘彩玲, 王嘉蓉, 杨征. 弛豫时间分布技术在固体氧化物燃料电池中的应用[J]. 材料导报, 2025, 39(19): 24090247-8.
TAN Ting, LI Chunsheng, WANG Guanxu, LIU Cailing, WANG Jiarong, YANG Zheng. Application of Distribution of Relaxation Times Technique in Solid Oxide Fuel Cells. Materials Reports, 2025, 39(19): 24090247-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090247  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24090247
1 Muhammad Rafique, Huma Nawaz, M. Shahid Rafique, et al. International Journal of Energy Research, 2018, 43(7), 2423.
2 Shuai He, San Ping Jiang. Progress in Natural Science:Materials International, 2021, 31(3), 341.
3 Jiapeng Liu, Francesco Ciucci. Journal of the Electrochemical Society, 2020, 167(2), 026506.
4 Yu Chen, YongMan Choi, Seonyoung Yoo, et al. Joule, 2018, 2(5), 938.
5 Zhu T, Troiani H E, Mogni L V , et al. Joule, 2018, 2(3), 478.
6 Sebastian Dierickx, André Weber, Ellen Ivers-Tiffée. Electrochimica Acta, 2020, 355, 136764.
7 Yanxiang Zhang, Yu Chen, Mufu Yan, et al. Journal of Power Sources, 2015, 283, 464.
8 Yanxiang Zhang, Yu Chen, Fanglin Chen. Journal of Power Sources, 2015, 277, 277.
9 Schichlein H, Müller A C, Voigts M, et al. Journal of Applied Electrochemistry, 2002, 32(8), 875.
10 Kournoutis V C, Tietz F, Bebelis S. Fuel Cells, 2009, 9(6), 852.
11 Johan Tallgren, Carlos Boigues Muñoz, Jyrki Mikkola, et al. ECS Tran-sactions, 2017, 78(1), 2141.
12 Federica Torrigino, Fabian Grimm, Jürgen Karl, et al. Heliyon, 2024, 10(12), e32509.
13 Garcés D, Wang H, Barnett S A, et al. Journal of Materials Chemistry A, 2018, 6(34),16699.
14 Zhihong Du, Hailei Zhao, Sha Yi, et al. ACS Nano, 2016, 10(9), 8660.
15 Schichlein H, Feuerstein M, Müller A, et al. ECS Proceedings Volumes, 1999, 19(1), 1069.
16 Boukamp B A, Rolle A. Solid State Ionics, 2018, 314, 103.
17 Yanxiang Zhang, Yu Chen, Mei Li, et al. Journal of Power Sources, 2016, 308, 1.
18 Klotz D, Schönleber M, Schmidt J P, et al. Electrochimica Acta, 2011, 56(24), 8763.
19 Markus Nohl, Gaurav Raut, Stephanie Elisabeth Wolf, et al. ECS Tran-sactions, 2021, 103(1), 1403.
20 Mitra Ghamarinia, Alireza Babaei, Cyrus Zamani, et al. Chemical Engineering Journal Advances, 2023, 15, 100503.
21 Kobayashi K, Suzuki T S. Electrochemistry, 2022, 90(1), 017004.
22 Adeleke Maradesa, Baptiste Py, Jake Huang, et al. Joule, 2024, 8(7), 1958.
23 Tiff Ivers, Eacute, Ellen E, et al. Journal of the Ceramic Society of Japan, 2017, 125(4), 193.
24 Christian Plank, Tom Rüther, Leonard Jahn, et al. Journal of Power Sources, 2024, 594, 233845.
25 Lu M Y, Railsback J G, Wang H, et al. Journal of Materials Chemistry A, 2019, 7(22), 13531.
26 Hossein Madi, Andrea Lanzini, Davide Papurello, et al. Journal of Power Sources, 2016, 326, 349.
27 Tinghei Wan, Mattia Saccoccio, Chi Chen, et al. Electrochimica Acta, 2015, 184, 483.
28 Osinkin D A. Journal of Power Sources, 2022, 527, 231120.
29 Osinkin D A. Electrochimica Acta, 2021, 372, 137858.
30 Wang T, Zhang T, Sun Y N, et al. Chinese Journal of Power Sources, 2024, 48(5), 908 (in Chinese).
王涛, 张涛, 孙元娜, 等. 电源技术, 2024, 48(5), 908.
31 Williams N J, Osborne C, Seymour I D, et al. Electrochemistry Communications, 2023, 149, 107458.
32 Osinkin D A. Journal of Power Sources, 2023, 571, 233085.
33 Jieshan Chang, Meihua Jiao, Panpan Zhang, et al. Electrochimica Acta, 2024, 498, 144615.
34 Carlos Boigues Muñoz, Davide Pumiglia, F. Santoni, et al. ECS Tran-sactions, 2015, 68(1), 2227.
35 Chenghao Yang, Zhibin Yang, Chao Jin, et al. Advanced Materials, 2012, 24(11), 1439.
36 Yin W, Chuang S S C. Catalysis Communications, 2017, 102, 62.
37 Bin Chen, Haoran Xu, Yuan Zhang, et al. International Journal of Hydrogen Energy, 2019, 44(29), 15313.
38 Kusnezoff M, Trofimenko N, Muller M, et al. Materials (Basel), 2016, 9(11), 906.
39 Haolong Li, Wei Wei, Fengxia Liu, et al. Energy, 2023, 267, 126482.
40 Wenchao Song, Zhenkai Ma, Yang Yang, et al. International Journal of Hydrogen Energy, 2020, 45(28), 14480.
41 Xiuan Xi, Xuewan Wang, Yun Fan, et al. Journal of Power Sources, 2021, 482, 228981.
42 Chunming Xu, Wang Sun, Rongzheng Ren, et al. Applied Catalysis B:Environmental, 2021, 282, 119553.
43 Yu Chen, Ye Lin, Yanxiang Zhang, et al. Nano Energy, 2014, 8, 25.
44 Yu Chen, Yanxiang Zhang, Jeffrey Baker, et al. ACS Applied Materials & Interfaces, 2014, 6(7), 5130.
45 Yong Guan, Yunhui Gong, Wenjie Li, et al. Journal of Power Sources, 2011, 196(24), 10601.
46 Qianqian Ji, Lei Bi, Jintao Zhang, et al. Energy & Environmental Science, 2020, 13(5), 1408.
47 Arsalan Zare, Hirad Salari, Alireza Babaei, et al. Journal of Electroanalytical Chemistry, 2023, 936, 117376.
48 Yu Y, Ludwig K F, Woicik J C, et al. ACS Applied Materials & Interfaces, 2016, 8(40), 26704.
49 Nadeem M, Li Y, Bouwmeester H J M, et al. International Journal of Hydrogen Energy, 2020, 45(46), 25299.
50 Shamim Shahrokhi, Alireza Babaei, Cyrus Zamani. International Journal of Hydrogen Energy, 2018, 43(52), 23091.
51 Rui Guan, Zhen Wang, Huan Xu, et al. ACS Applied Energy Materials, 2022, 5(1), 481.
52 Ali Soltanizade, Alireza Babaei, Abolghasem Ataie, et al. Journal of Applied Electrochemistry, 2019, 49(11), 1113.
53 Zohreh Akbari, Alireza Babaei. Journal of the American Ceramic Society, 2020, 103(2), 1332.
54 Yang Zhang, Leyu Shen, Yuhao Wang, et al. Journal of Materials Che-mistry A, 2022, 10(7), 3495.
55 Hirofumi Sumi, Takayuki Ohshiro, Masanobu Nakayama, et al. Electrochimica Acta, 2015, 184, 403.
56 Ziwei Zheng, Junmeng Jing, Ze Lei, et al. International Journal of Hydrogen Energy, 2022, 47(41), 18139.
57 Kwangjin Park, Sungoh Yu, Joongmyeon Bae, et al. International Journal of Hydrogen Energy, 2010, 35(16), 8670.
58 Shi W, Lyu Z, Han M. ECS Transactions, 2019, 91(1), 791.
59 Bowen Song, Enrique Ruiz-Trejo, Antonio Bertei, et al. Journal of Power Sources, 2018, 374, 61.
60 Hsiao Y C, Selman J R. Solid State Ionics, 1997, 98(1), 33.
61 Zacharie Wuillemin, Yannik Antonetti, Cédric Beetschen, et al. ECS Transactions, 2013, 57(1), 561.
62 Yuhdai Kikuchi, Junko Matsuda, Yuya Tachikawa, et al. ECS Transactions, 2017, 78(1), 1253.
63 Zewei Lyu, Hangyue Li, Minfang Han, et al. Journal of Power Sources, 2022, 538, 231569.
64 Suhas Nuggehalli Sampathkumar, Philippe Aubin, Karine Couturier, et al. International Journal of Hydrogen Energy, 2022, 47(18), 10175.
65 Jin D, Lu Y, Yu Y T, et al. Materials Research and Application, 2023, 17(2), 220 (in Chinese).
金盾, 陆越, 余喻天, 等. 材料研究与应用, 2023, 17(2), 220.
66 Hirofumi Sumi, Hiroyuki Shimada, Yuki Yamaguchi, et al. Electrochimica Acta, 2020, 339, 135913.
67 Endler C, Leonide A, Weber A, et al. Journal of the Electrochemical Society, 2010, 157(2), B292.
[1] 李雷, 孙东旭, 柴玉莹, 谢飞, 吴明. 剥离涂层下含缺陷管道腐蚀规律的瞬态数值模拟研究[J]. 材料导报, 2025, 39(5): 23010094-9.
[2] 曲九灏, 雷宽, 马棋盛, 张艺馨, 刘贵群, 张小丽. DD90镍基单晶高温合金的电化学溶解行为研究[J]. 材料导报, 2025, 39(17): 24060120-7.
[3] 历健, 郝宏, 周志勇, 汪科良, 郑玉刚, 赵蒙, 周晖, 张凯锋. 乙炔流量对四面体含氢非晶碳薄膜结构、机械特性和大气摩擦学性能的影响[J]. 材料导报, 2025, 39(15): 25030081-8.
[4] 温鑫, 李多生, 叶寅, 徐锋, 郎文昌, 刘俊红, 于爽爽, 余欣秀. 阴极碳靶电流对物理气相沉积制备ta-C薄膜性能的影响[J]. 材料导报, 2025, 39(10): 24030121-5.
[5] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[6] 黄旭锐, 余喻天, 雷金勇, 郝敬轩, 俞传鑫, 潘军, 杨怡萍, 廖梓豪, 关成志, 王建强. 导电(Cu,Mn)3O4接触层在SOEC阳极侧的应用[J]. 材料导报, 2024, 38(8): 23040278-4.
[7] 王越, 周本基, 徐能能, 乔锦丽. 可逆锌-空气电池锌阳极研究进展及挑战[J]. 材料导报, 2024, 38(6): 23040162-10.
[8] 陈京健, 徐能能, 芦拓, 魏群山. 锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究[J]. 材料导报, 2024, 38(6): 23040217-6.
[9] 杨文秀, 王冰冰, 俞小花, 田林, 谢刚. 热分解温度对IrO2-RuO2-SnO2/Ti阳极微观形貌及性能的影响[J]. 材料导报, 2024, 38(24): 23080117-5.
[10] 王蜀湘, 卢星宇, 邹力, 任洁, 王留留, 谢佳乐. Si光阳极稳定性提高策略研究进展[J]. 材料导报, 2024, 38(2): 21100131-9.
[11] 陆泉芳, 郝小霞, 冯妍, 马晓娟, 王波, 俞洁. 阴极辉光放电电解制备纳米ZnO[J]. 材料导报, 2024, 38(13): 22060298-7.
[12] 黄少炎, 修慧娟, 王志雄, 樊莎, 王思敏, 邓自立, 李娜, 李金宝. 纳米纤维素基复合材料在锂硫电池中的应用研究进展[J]. 材料导报, 2024, 38(12): 22120181-6.
[13] 沈士泰, 陈雨晨, 卫国英, 朱本峰. CeO2/铝合金自修复阳极氧化复合膜的电化学制备及表面性能[J]. 材料导报, 2023, 37(S1): 23030301-5.
[14] 刘宏亮, 王月莹, 沙剑春, 杨炳林, 贾志明, 王鑫, 高思睿, 何立子. 固溶温度对Al-Mg-Sn-Ga-Bi合金显微组织及电化学性能的影响[J]. 材料导报, 2023, 37(14): 21120010-6.
[15] 侯继禹, 王保杰, 许凯, 许道奎, 孙杰. 镁合金负差数效应的研究进展[J]. 材料导报, 2023, 37(12): 21070256-7.
[1] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[2] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[3] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[4] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[5] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[6] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[7] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
[8] CHEN Tao, XUE Songbai, SUN Zijian, ZHAI Peizhuo, CHEN Weizhong, GUO Peipei. Short-circuit Transition Control Technology for CO2 Gas Shielded Welding: Research Status and Prospect[J]. Materials Reports, 2019, 33(9): 1431 -1442 .
[9] ZHANG Meili, XIN Yong. Research on Molecular Morphology Evolution Based on Weld Line Formation of RHCM and CIM[J]. Materials Reports, 2019, 33(18): 3125 -3129 .
[10] CUI Wei, SONG Rixuan, XIAO Zhongmin, FENG Ziming, LENG Decheng, DONG Kangxing, ZHANG Qiang, YANG Zhijun. Multi-field Coupling Numerical Simulation Method for Interference Effect of Double Cracks in X80 Oil and Gas Pipeline Weld[J]. Materials Reports, 2020, 34(2): 2131 -2136 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed