Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24080075-14    https://doi.org/10.11896/cldb.24080075
  高分子与聚合物基复合材料 |
氧化石墨烯对聚氨酯凝胶中离子传输的影响规律研究
张雨林1, 肖颖3, 靳力1, 贺雍律1, 陈晨2, 周新贵2, 张鉴炜1,*
1 国防科技大学空天科学学院,长沙 410073
2 国防科技大学空天科学学院新型陶瓷纤维及其复合材料重点实验室,长沙 410073
3 湖北航天化学技术研究所,湖北 襄阳 441003
Study on the Influence of Graphene Oxide on Ion Transport in Polyurethane Gel
ZHANG Yulin1, XIAO Ying3, JIN Li1, HE Yonglyu1, CHEN Chen2, ZHOU Xingui2, ZHANG Jianwei1,*
1 College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
2 Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
3 Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
下载:  全 文 ( PDF ) ( 44578KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚合物基凝胶热电材料存在离子传输选择性低、力学性能差等问题。引入热电性能优良的氧化石墨烯(GO)为添加剂来提高凝胶的综合性能,研究不同比例GO/聚合物基体聚氨酯(PU)/离子液体1-乙基-3-甲基咪唑双氰胺 (EMIM DCA)复合凝胶的电导率和塞贝克系数变化,观察复合凝胶的结构和形貌,并以凝胶为离子传输层、碳膜为功能层开发变红外发射率器件。利用模拟软件对离子传输行为进行分子动力学模拟。研究表明:不同比例的GO与聚氨酯离子凝胶都有提高复合凝胶电学性能的作用,当GO掺杂浓度为0.3%(质量分数,如无特别说明,下同)时,凝胶性能最佳,电导率为1.6×10-4 S/cm,塞贝克系数值为9.31 mV/K;添加GO的凝胶玻璃化转变温度都比纯聚氨酯离子凝胶高;在初始条件冷热两端温差均为50 ℃的情况下,掺杂0.3% GO的凝胶器件在20 s内使得碳膜表面的红外温度下降9 ℃,表现出高效且稳定可靠的发射率调控能力。分子动力学模拟结果和实验结果相符。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张雨林
肖颖
靳力
贺雍律
陈晨
周新贵
张鉴炜
关键词:  离子凝胶  氧化石墨烯  热电性能  发射率调控    
Abstract: Polymer-based gel electrolytes for thermoelectric materials also have problems such as low ionic conductivity and poor mechanical properties. Graphene oxide (GO) with excellent thermoelectric properties was introduced as an additive to improve the comprehensive performance of the gel, and the changes of conductivity and Seebeck coefficient of different ratios of GO/polymer matrix polyurethane/ionic liquid EMIM DCA composite gels were studied, and the structure and morphology of the composite gels were observed. Variable emissivity devices were prepared, and infrared cameras were used to measure the regulation of infrared emissivity by composite gels. The simulation software was used to simulate and demonstrate the relevant parameters. The results shows that different proportions of GO and polyurethane ionogels have the effect of improving the electrical properties of composite gels, and the conductivity of the gel was 1.6×10-4 S/cm when the GO doping concentration was 0.3wt%, and the Seebeck coefficient value was 9.31 mV/K. The glass transition temperature of gels with GO is higher than that of pure polyurethane ion gels. The gel electrolyte device doped with 0.3% GO content dropped by about 50 ℃ on the surface of the carbon film within 20 s, showing stable and reliable properties. The parameter analysis results of the simulation software MS are generally consistent with the experimental results.
Key words:  ionogel    graphene oxide    thermoelectric property    emissivity regulation
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  TB39  
基金资助: 湖南省青年科技人才项目(2022RC1080)
通讯作者:  *张鉴炜,博士,洪堡学者,国防科技大学空天科学学院副教授。目前主要从事结构/功能一体化复合材料、AI辅助新型高分子及其复合材料开发等方面的研究。jianwei_zhang@nudt.edu.cn   
作者简介:  张雨林,国防科技大学空天科学学院博士研究生,在张鉴炜副教授的指导下进行研究。目前主要研究领域为机器学习辅助的离子凝胶材料设计。
引用本文:    
张雨林, 肖颖, 靳力, 贺雍律, 陈晨, 周新贵, 张鉴炜. 氧化石墨烯对聚氨酯凝胶中离子传输的影响规律研究[J]. 材料导报, 2025, 39(19): 24080075-14.
ZHANG Yulin, XIAO Ying, JIN Li, HE Yonglyu, CHEN Chen, ZHOU Xingui, ZHANG Jianwei. Study on the Influence of Graphene Oxide on Ion Transport in Polyurethane Gel. Materials Reports, 2025, 39(19): 24080075-14.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080075  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24080075
1 Wu X, Gao N W, Jia H Y, et al. Chemistry, 2021, 16(2), 129.
2 Sun T, Wang L, Jiang W. Materials Today, 2022, 57, 121.
3 Pai Y H, Tang J H, Zhao Y, et al. Advanced Energy Materials, 2023, 13, 1.
4 Zhang Y, Li Z, Long Q, et al. Journal of Colloid and Interface Science, 2024, 674, 695.
5 Li Z, Deng L, Lv H, et al. Advanced Functional Materials, 2021, 31(42), 2104836.
6 Liu C, Li Q, Wang S, et al. Nano Energy, 2022, 92, 2211.
7 Zhao D, Martinelli A, Willfahrt A, et al. Nature Communications, 2019, 10(1), 1.
8 Kim S L, Lin H T, Choongho Y U. Advanced Energy Materials, 2016, 6(18), 1.
9 Yuan M Q, Erdman J, Tang C Y, et al. RSC Advances, 2014, 4(103), 59637.
10 Medhekar N V, Ramasubramaniam A, Ruoff R S, et al. ACS Nano, 2010, 4(4), 2300.
11 Lerf A, He H, Forster M, et al. The Journal of Physical Chemistry B, 1998, 102(23), 4477.
12 Yu B Y, Duan J J, Cong H J. Science, 2020, 370(6514), 342.
13 Savoie B M, Webb M A, Thomas F, et al. The Journal of Physical Chemistry Letters, 2017, 8(3), 641.
14 Zhao X M. Study on gel polymer electrolyte with graphene oxide as filler. Master's Thesis, Xiangtan University, China, 2020 (in Chinese).
赵晓明. 以氧化石墨烯为填充物的凝胶聚合物电解质的研究. 硕士学位论文, 湘潭大学, 2020.
15 Prasanth R, Shubha N, Hng H H, et al. European Polymer Journal, 2013, 49(2), 307.
16 Zalewska A, Walkowiak M, Niedzicki L, et al. Electrochimica Acta, 2010, 55(4), 1308.
17 Ahn H, Zhao X, Chauhan G S, et al. Electrochimica Acta, 2010, 55(4), 1347.
18 Fang Y, Cheng H, He H, et al. Advanced Functional Materials, 2020, 30(51), 1.
19 Zhang X F. Preparation of imidazolium-based anion exchange membranes and study of the transmission mechanisms of OH-. Master's Thesis, Beijing University of Chemical Technology, China, 2015 (in Chinese).
张雪飞. 咪唑阴离子交换膜的制备及OH-传导机理的研究. 硕士学位论文, 北京化工大学, 2015.
20 Chi C, An M, Qi X, et al. Nature Communications, 2022, 13(1), 221.
21 Salihoglu O, Uzlu H B, Yakar O, et al. Nano Letters, 2018, 18(7), 4541.
22 Chen Z, Yang K, Xian T, et al. ACS Applied Materials & Interfaces, 2021, 13(23), 27278.
23 Sun Y, Chang H, Hu J, et al. Advanced Optical Materials, 2021, 9(3), 2001216.
[1] 李少飞, 魏智强, 乔宏霞, 曹辉, 赵辛源, 葸玲玲. 纳米氧化石墨烯与聚合物改性水泥基复合材料性能研究进展[J]. 材料导报, 2025, 39(10): 24040171-12.
[2] 刘龙鑫, 张玲, 王瑞涛, 孟腾飞, 刘芳, 谢强, 张冬海. GO/PANI复合颗粒的制备及防腐应用研究进展[J]. 材料导报, 2025, 39(10): 24040205-9.
[3] 解伟荣, 周涵. 柔性电响应动态热辐射调控材料研究进展[J]. 材料导报, 2025, 39(1): 24110064-8.
[4] 冯文彪, 李鑫, 张亚龙. Mg3Sb2合金中Mg空位对电子传输性能的影响[J]. 材料导报, 2024, 38(17): 22110149-7.
[5] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[6] 刘洪亮, 郭志迎, 袁晓峰, 朱尊伟, 高倩倩, 张忻. 熔体旋甩工艺对Mg2(Si0.4Sn0.6)Sb0.015固溶体微结构和热电性能的影响研究[J]. 材料导报, 2024, 38(12): 22090010-5.
[7] 朱玉方, 张慧丽, 梁丰国, 杨新伟, 陈长科, 买买提江·依米提, 马俊红. 还原氧化石墨烯的可控制备及表征[J]. 材料导报, 2024, 38(12): 22110271-6.
[8] 任鑫, 王浩鑫, 孙涛, 王港, 孟超, 邱星武. 单脉冲电沉积Ni-纳米TiC-氧化石墨烯复合镀层结构及磨损性能[J]. 材料导报, 2024, 38(11): 22060057-7.
[9] 肖颖, 梁耕源, 雷博文, 贺雍律, 赵文姝, 鞠苏, 张鉴炜. 用于能量收集的离子热电材料研究进展[J]. 材料导报, 2023, 37(4): 22020174-9.
[10] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[11] 王姗迟, 潘嵩玥, 孙俊玲, 赵燕. 热阻型氧化石墨烯基火灾早期预警传感器的研究进展[J]. 材料导报, 2023, 37(24): 22010297-9.
[12] 刘新宇, 刘惠, 王新杰, 朱平华, 陈春红, 周心磊. 氧化石墨烯改性地聚物再生混凝土的抗硫酸溶蚀性能研究[J]. 材料导报, 2023, 37(21): 22010212-6.
[13] 颜冬仙, 樊新. rGO/NiCo复合材料制备及电化学性能研究[J]. 材料导报, 2023, 37(18): 22030311-6.
[14] 徐晨辉, 孔栋, 况志祥, 陈卓, 马燕, 邹富祥, 陈昕, 胡晓明, 冯波, 樊希安. 高性能新型Mg3(Sb,Bi)2基热电材料的发展现状[J]. 材料导报, 2023, 37(13): 21100209-10.
[15] 吴晨曦, 郑文跃, 王现中, 熊道英, 金少波. 石墨烯增强防腐涂层的研究进展[J]. 材料导报, 2023, 37(13): 21080272-9.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed