Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24080111-8    https://doi.org/10.11896/cldb.24080111
  金属与金属基复合材料 |
带槽高强钢板感应加热工艺的数值模拟与实验验证
江亦然1,2, 张东桥1,2,*, 钱应平1,2, 王腾强1
1 湖北工业大学机械工程学院,武汉 430068
2 湖北工业大学现代制造质量工程湖北省重点实验室,武汉 430068
Numerical Simulation and Experimental Validation of Induction Heating Process for Slotted High-strength Steel Plates
JIANG Yiran1,2, ZHANG Dongqiao1,2,*, QIAN Yingping1,2, WANG Tengqiang1
1 School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
2 Hubei Key Laboratory of Modern Manufacturing Quality Engineering, Hubei University of Technology, Wuhan 430068, China
下载:  全 文 ( PDF ) ( 13534KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为解决常温下高厚宽比带槽高强钢板弯曲成形困难及成形质量差等问题,引入感应加热技术进行局部热弯曲成形。利用有限元软件建立了电磁-热耦合三维仿真模型,对带槽高强钢板局部感应加热过程进行研究,并通过感应加热实验验证了仿真模型的可靠性,实测温度数据与仿真结果的最大误差为8.3%。对比了局部感应加热与整体加热的弯曲成形方案,结果表明:与常温相比,局部感应加热与整体加热的成形最大应力分别降低25.7%、27.44%,回弹率分别减小10.42%、10.41%;局部感应加热下内部最大温差144.34 ℃与内部最大温差27.56 ℃相比,成形最大应力大1.03%、回弹大0.57%;局部感应加热下温度均匀性越好,成形精度越高。此外,还研究了不同电流、电流频率、厚宽比对带槽高强钢板温度场分布的影响规律,结果表明,随着电流、电流频率、厚宽比增大,温度峰值也增大;电流、厚宽比对温度均匀性的影响更显著,高频不利于温度均匀性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
江亦然
张东桥
钱应平
王腾强
关键词:  电磁-热耦合  带槽高强钢板  热弯曲成形  局部感应加热  数值模拟  温度场    
Abstract: In order to solve the problems of bending and forming difficulties and poor forming quality of slotted high-strength steel plate with high thickness-to-width ratio at room temperature, induction heating technology is introduced to carry out local thermal bending and forming. A three-dimensional electromagnetic-thermal coupling simulation model was developed using finite element software to analyze the local induction heating process of high-strength steel plates with slots, and induction heating experimental validation was carried out to verify the reliability of the simulation model, with a maximum error of only 8.3%. Comparing local induction heating and overall heating bending forming schemes, the results show that:maximum stress is reduced by 25.7% and 27.44%, while rebound decreases by 10.42% and 10.41% respectively, compared to room temperature. The local induction heating internal maximum temperature difference of 144.34 ℃ increases the maximum stress by 1.03% and increases the springback by 0.57% compared to the temperature difference of 27.56 ℃. The results indicate that higher temperature uniformity achieved through local induction heating enhances forming accuracy. Furthermore, the study investigates the effects of varying current, frequency, and the thickness-to-width ratio on the temperature field distribution of the high-strength steel plates. It is found that as the current, frequency, and thickness-to-width ratio increase, the temperature peak also rises. Notably, the current and thickness-to-width ratio significantly affect temperature uniformity, while high-frequency currents adversely impact heating uniformity.
Key words:  electromagnetic-thermal coupling    slotted high-strength steel plate    thermal bending forming    localized induction heating    numerical simulation    temperature field
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  TG156.1  
基金资助: 湖北省教育厅科学技术研究计划青年人才项目(Q20201405)
通讯作者:  *张东桥,博士,湖北工业大学机械工程学院讲师、硕士研究生导师。目前主要从事液态金属成形与金属塑性成形数值模拟、模具技术与制造、热处理模拟仿真等方面的研究工作。zdq237@foxmail.com   
作者简介:  江亦然, 湖北工业大学机械工程学院硕士研究生。目前主要研究方向为金属热成形工艺。
引用本文:    
江亦然, 张东桥, 钱应平, 王腾强. 带槽高强钢板感应加热工艺的数值模拟与实验验证[J]. 材料导报, 2025, 39(19): 24080111-8.
JIANG Yiran, ZHANG Dongqiao, QIAN Yingping, WANG Tengqiang. Numerical Simulation and Experimental Validation of Induction Heating Process for Slotted High-strength Steel Plates. Materials Reports, 2025, 39(19): 24080111-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080111  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24080111
1 Xu M, Tian W, Li Q, et al. Gas Turbine Experiment and Research, 2020, 33(4), 36 (in Chinese).
徐鸣, 田伟, 李青, 等. 燃气涡轮试验与研究, 2020, 33(4), 36.
2 Xiang H Y, Zhou Y, Leng C J, et al. Computer Silmulation, 2021, 38(8), 236 (in Chinese).
项辉宇, 周洋, 冷崇杰, 等. 计算机仿真, 2021, 38(8), 236.
3 Liu P X. Journal of Plasticity Engineering, 2019, 26(3), 268 (in Chinese).
刘培星. 塑性工程学报, 2019, 26(3), 268.
4 Liu P, Zhang T C, Guo B, et al. Journal of Mechanical Science and Technology, 2019, 33(9), 4361.
5 Lucia O, Maussion P, Dede E J, et al. IEEE Transactions on Industrial Electronics, 2014, 61(5), 2509.
6 Jin Q, Jiang W C, Wang J G, et al. Journal of Mechanical Engineering, 2023, 59(8), 83 (in Chinese).
金强, 蒋文春, 王金光, 等. 机械工程学报, 2023, 59(8), 83.
7 Wang Y, Mehari Z A, Wu J Y, et al. Materials Research Express, 2022, 9(10), 106504.
8 Li B, Wang B, You X P, et al. International Journal of Heat and Mass Transfer, 2020, 151, 119422.
9 Liu H P, Wang X H, Si L Y, et al. Journal of Iron and Steel Research International, 2020, 27(4), 420.
10 Zhu Y, Zhang G Y. Heat Treatment of Metals, 2014(2), 129 (in Chinese).
朱叶, 张根元. 金属热处理, 2014(2), 129.
11 Wang J, Chen X, Yu L, et al. Journal of Mechanical Engineering Science, 2021, 235(1), 190.
12 Hadad Y, Kochavi E, Levy A. Applied Thermal Engineering, 2016, 102, 149.
13 Peng X F. Research and application on local heating roll forming technology of high strength steel. Ph.D. Thesis, University of Science and Technology Beijing, China, 2018 (in Chinese).
彭雪锋. 高强钢局部加热辊压成形技术研究与应用. 博士学位论文, 北京科技大学, 2018.
14 Peng W, Zhang L, Li X D, et al. Journal of Mechanical Engineering, 2024, 60(2), 119 (in Chinese).
彭文, 张丽, 李旭东, 等. 机械工程学报, 2024, 60(2), 119.
15 Peng W, Chen X R, Zhang L, et al. The International Journal of Advanced Manufacturing Technology, 2021, 115(11-12), 3423.
16 Zhang P F, Wang D C, Cheng P, et al. Materials Reports, 2022, 36(12), 154 (in Chinese).
张鹏飞, 王德成, 程鹏, 等. 材料导报, 2022, 36(12), 154.
17 Yang X G, Wang Y H, Liu F G, et al. Institute of Electrical and Electronics Engineers Inc, 2004, 14, 1854.
18 Zhang T X. Numerical simulation and experimental study on high frequency induction heating process of helical gear of heavy duty truck transmission. Master's Thesis, Yanshan University, China, 2021 (in Chinese).
张天雄. 重型汽车变速器斜齿轮高频感应加热过程数值模拟与实验研究. 硕士学位论文, 燕山大学, 2021.
19 Huang S. Numerical simulation study on the uniformity of temperature distribution in transverse induction heating of metal strip. Master's Thesis, Northeastern University, China, 2020 (in Chinese).
黄苏. 金属板带横向感应加热温度分布均匀性数值模拟研究. 硕士学位论文, 东北大学, 2020.
[1] 王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
[2] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[3] 张昌青, 马东东, 谷怀壮, 王栋, 刘恩荣, 张鹏省. 1060-H24纯铝无轴肩微型搅拌摩擦焊的数值模拟分析[J]. 材料导报, 2025, 39(5): 24020082-6.
[4] 李雷, 孙东旭, 柴玉莹, 谢飞, 吴明. 剥离涂层下含缺陷管道腐蚀规律的瞬态数值模拟研究[J]. 材料导报, 2025, 39(5): 23010094-9.
[5] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[6] 陈学烨, 杨斌, 陈志, 苏菁. 隔热涂层表面高温气流冲击效应的3D数值模拟[J]. 材料导报, 2025, 39(18): 24080110-6.
[7] 杨雨, 黄斌, 黄伟, 龚明子, 潘阿馨, 陈庆丰, 陈宝春, 韦建刚. UHPC中纤维间距折减效应试验与模拟研究[J]. 材料导报, 2025, 39(14): 24070154-8.
[8] 汪宙, 陈爽, 马宗涛, 张天豪, 李继文, 晁霞. 非均衡底吹对铁碳熔池废钢熔化行为影响的模拟研究[J]. 材料导报, 2025, 39(14): 24060048-8.
[9] 赵卫平, 刘英健, 生兆川, 程赛, 徐旸. 三维细观早龄期混凝土导热性能数值模拟[J]. 材料导报, 2025, 39(10): 24040083-10.
[10] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[11] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[12] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[13] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[14] 张天刚, 潘启越, 张志强, 曹思雨. 铝合金表面阳极氧化膜激光清洗机制分析[J]. 材料导报, 2024, 38(24): 23100128-10.
[15] 金浏, 杨健, 吴洁琼, 杜修力. 考虑混凝土细观非均质性的钢筋混凝土结构疲劳寿命预测概率模型[J]. 材料导报, 2024, 38(20): 23090009-8.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[3] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[4] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[7] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[8] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed