Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24080035-6    https://doi.org/10.11896/cldb.24080035
  无机非金属及其复合材料 |
广谱响应Cu2(OH)2CO3/g-C3N4异质结的构建及其光催化四环素的降解:降解途径及反应机理
梁红玉1,*, 许佳智1, 李政1, 陆光2, 王斌3, 李桐宇1, 刘玉佳1
1 辽宁石油化工大学环境与安全工程学院,辽宁 抚顺 113001
2 辽宁石油化工大学土木工程学院,辽宁 抚顺 113001
3 上海蓝滨石化设备有限责任公司,上海 201518
Construction of Wide-spectrum-driven Cu2(OH)2CO3/g-C3N4 Heterojunction and Its Improved Photocatalysis Towards Tetracycline Degradation: Degradation Pathways and Mechanism
LIANG Hongyu1,*, XU Jiazhi1, LI Zheng1, LU Guang2, WANG Bin3, LI Tongyu1, LIU Yujia1
1 School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, Liaoning, China
2 School of Civil Engineering, Liaoning Petrochemical University, Fushun 113001, Liaoning, China
3 Lanpec Technologies Limited, Shanghai 201518, China
下载:  全 文 ( PDF ) ( 10914KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作设计了一款不含贵金属、宽光谱响应的异质结催化剂Cu2(OH)2CO3/石墨相氮化碳(Cu/g-C3N4),并考查了其对四环素(TC)的光催化降解性能。采用TEM、SEM、XRD、紫外-可见光谱、荧光光谱等分析手段对产物形貌、结构、光学性质等进行了表征。实验结果表明,引入的组分Cu2(OH)2CO3一方面作为可见光和近红外光吸收材料赋予异质结对模拟太阳光的广谱响应性,另一方面与g-C3N4构成“Z型”异质结从而促进了光生电子-空穴的有效分离,提高了光能-化学能转化效率。Cu/g-C3N4 (1∶4)异质结对TC降解的光催化性能最佳,一级反应速率常数达到0.017 6 min-1,分别是Cu2(OH)2CO3和g-C3N4的4倍和3.1倍,且具有优异的光催化稳定性。此外,本工作还提出了三种Cu/g-C3N4 (1∶4)异质结光催化降解TC的可能路径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁红玉
许佳智
李政
陆光
王斌
李桐宇
刘玉佳
关键词:  石墨相氮化碳  碱式碳酸铜  异质结  四环素  光催化    
Abstract: Awide-spectrum-driven Cu2(OH)2CO3/g-C3N4(Cu/g-C3N4) heterojunction catalyst was designed and the photocatalytic tetracycline degradation was investigated in the present work. The morphologies, crystal phases, optical property and so on of the as-prepared photocatalysts were characterized by means of TEM, SEM, XRD, UV-visible light spectroscopy, photoluminescence spectroscopy, etc. Experimental results indicated that the component Cu2(OH)2CO3 gave heterojunction a broad spectrum response to simulated sunlight due to its absorption of visible and near infrared light, and the consist of Z-scheme heterojunction with g-C3N4 enhanced photochemical energy conversion efficiency. Particularly, Cu/g-C3N4 (1∶4) heterojunction showed the best photocatalytic activity towards TC degradation, including an one order reaction rate constant of 0.017 6 min-1, which was 3 and 2.1 times higher than that of neat Cu2(OH)2CO3 and g-C3N4, as well as perfect photocatalytic stability. Moreover, this work hypothesized three possible photocatalytic degradation pathways of TC over Cu/g-C3N4 (1∶4) heterojunction.
Key words:  g-C3N4    Cu2(OH)2CO3    heterojunction    tetracycline    photocatalysis
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  O641  
  O649  
基金资助: 辽宁省教育厅高校基本科研项目(LJKMZ20220722);抚顺市“抚顺英才计划”(FSYC202107006)
通讯作者:  *梁红玉,博士,辽宁石油化工大学环境与安全工程学院副教授、硕士研究生导师。目前主要从事纳米复合材料、环境污染控制等方面的研究。lianghongyu163@163.com   
引用本文:    
梁红玉, 许佳智, 李政, 陆光, 王斌, 李桐宇, 刘玉佳. 广谱响应Cu2(OH)2CO3/g-C3N4异质结的构建及其光催化四环素的降解:降解途径及反应机理[J]. 材料导报, 2025, 39(19): 24080035-6.
LIANG Hongyu, XU Jiazhi, LI Zheng, LU Guang, WANG Bin, LI Tongyu, LIU Yujia. Construction of Wide-spectrum-driven Cu2(OH)2CO3/g-C3N4 Heterojunction and Its Improved Photocatalysis Towards Tetracycline Degradation: Degradation Pathways and Mechanism. Materials Reports, 2025, 39(19): 24080035-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080035  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24080035
1 Hirsch R, Ternes T, Haberer K, et al. Science of the Total Environment, 1999, 225(1-2), 109.
2 Neta P, Huie R E, Ross A B. Journal of Physical & Chemical Reference Data, 1988, 17(3), 1027.
3 Kemper N. Ecological Indicators, 2008, 8(1), 1.
4 Zhang C, Lai C, Zeng G M, et al. Water Research, 2016, 95(5), 103.
5 Gong J L, Wang B, Zeng G M, et al. Journal of Hazardous Materials, 2009, 164(9), 1517.
6 Xu P, Zeng G M, Huang D L, et al. Chemical Engineering Journal, 2012, 203(1), 423.
7 Cheng M, Zeng G M, Huang D, et al. Chemical Engineering Journal, 2016, 284(9), 582.
8 Ren X Y, Zeng G M, Tang L, et al. Science of the Total Environment, 2018, 610-611, 1154.
9 Wu H P, Lai C, Zeng G M, et al. Critical Reviews in Biotechnology, 2016, 37(10), 754.
10 Chen M, Xu P, Zeng G M, et al. Biotechnology Advances, 2015, 33(5), 745.
11 Huang D, Wang R, Liu Y, et al. Environmental Science and Pollution Research, 2015, 22(2), 963.
12 Ji Y F, Shi Y Y, Dong W, et al. Chemical Engineering Journal, 2016, 298(4), 225.
13 Zhang Y, Zhou J B, Wang L, et al. Chemical Engineering Journal, 2019, 369(3), 745.
14 Yang Y, Zeng Z, Zhang C, et al. Chemical Engineering Journal, 2019, 375, 121991.
15 Zhu X D, Wang Y J, Sun R J, et al. Chemosphere, 2013, 92(8), 925.
16 Yang P P, Chen C W, Wang D F, et al. Applied Catalysis B, 2021, 285(7), 133.
17 Guo C, Yin S, Dong Q, et al. Nanoscale, 2012, 4(11), 3394.
18 Nguyen H T T, Tran H T V, Nguyen P M, et al. Journal of Water and Environment Technology, 2023, 21(1), 1.
19 Yang Y, Zhang C, Huang C, et al. Applied Catalysis B, 2019, 245(1), 87.
20 Qiao S, Zhao C C, He F T, et al. Materials Reports, 2020, 34(19), 19010 (in Chinese).
乔帅, 赵朝成, 贺凤婷, 等. 材料导报, 2020, 34(19), 19010.
21 Vattikuti S V, Kumar R P A, Jaesool S, et al. ACS Omega, 2018, 3(7), 7587.
22 Liu G X, Pang G W, Pan D Q, et al. Materials Reports, 2023, 37(9), 21100044 (in Chinese).
刘晨曦, 庞国旺, 潘多桥, 等. 材料导报, 2023, 37(9), 21100044.
23 Zhou P, Yu J, Jaroniec M. Advanced Materials, 2014, 26(29), 4920.
24 Low J, Yu J, Jaroniec M, et al. Advanced Materials, 2017, 29(20), 1601694.
25 He Z K, Fu J W, Cheng B, et al. Applied Catalysis B, 2017, 205(5), 104.
26 Liang H Y, Zou H, Hu S Z. New Journal of Chemistry, 2017, 41(17), 8920.
27 Chen C, Zhou Y, Wang N, et al. RSC Advances, 2015, 5, 95523.
28 Hao X, Dai D S, Li S S, Dalton Transactions, 2018, 47(2), 348.
29 Kondo K, Murakami N, Ye C, et al. Applied Catalysis B, 2013, 142(10), 362.
30 Guo Q, Xie Y, Wang X, et al. Chemical Physics Letters, 2003, 380(1), 84.
[1] 阳东胤, 赵媛, 燕红. 碳量子点的制备、性质及在光催化领域中的应用研究进展[J]. 材料导报, 2025, 39(8): 24060102-13.
[2] 赵娣, 刘洪燕, 王树军, 孙欣语, 张紫璇, 齐学宇, 刘子帆. Z型异质结复合薄膜UIO-66-NH2/Ag/Ag3PO4/Ni的可见光催化性能及机理[J]. 材料导报, 2025, 39(8): 24030178-6.
[3] 吴国栋, 张文, 伏鑫, 刘辉强, 汪建, 王兵, 熊鹰. 锰气相催化多晶金刚石表面原位石墨烯构筑研究[J]. 材料导报, 2025, 39(5): 24010176-4.
[4] 杨明, 孙杰, 王金泽, 崔占朋, 吴敏, 杜伟. 金属有机框架及碳基材料在室内有机污染物控制中的研究进展[J]. 材料导报, 2025, 39(4): 24010153-8.
[5] 张颁潮, 程厚燕. 原位生长WO3/Bi2WO6构筑界面内建电场增强光电极电荷分离与传输的研究[J]. 材料导报, 2025, 39(19): 24120134-8.
[6] 刘奇, 赵莉, 沈冰, 马子伦, 陆佳林, 曲雯雯. Z型分级微球Bi2WO6/CdS/rGO的微波合成及光催化性能研究[J]. 材料导报, 2025, 39(18): 24090195-8.
[7] 樊明昂, 谢潇琪, 冯丽, 杜红莉, 刘超. Mo2C修饰ZnCdS材料的制备及光催化产氢性能研究[J]. 材料导报, 2025, 39(17): 24050186-6.
[8] 路浩源, 穆锐, 仙光, 蒋昊洋, 刘杰. 金属单原子锚定g-C3N4光催化剂降解水体有机污染物的研究进展[J]. 材料导报, 2025, 39(17): 24050247-17.
[9] 唐瑞欣, 朱子琪, 王玲, 杨培, 周晓燕. 光催化解聚木质素及其模型化合物的研究进展[J]. 材料导报, 2025, 39(16): 24080059-11.
[10] 李成晗, 朱旭东, 李依萍, 燕红. 利用木质素碳量子点提升UIO-66-NH2材料光催化水解产氢效率研究[J]. 材料导报, 2025, 39(15): 24060189-8.
[11] 苗瑞霞, 贾小坛, 牛佳美, 晏杰. 二维Janus Ga2SSe/β-Ga2O3异质结在双轴应变调控下的电子及光学特性[J]. 材料导报, 2025, 39(14): 24070065-7.
[12] 张晓君, 韦慧珍, 王维雪, 孙墨杰. WO3复合Eu掺杂g-C3N4催化剂的制备及光催化降解氧氟沙星[J]. 材料导报, 2025, 39(13): 24050169-5.
[13] 何静娴, 刘建霞, 缑浩. 光热催化产氢技术的进展与讨论[J]. 材料导报, 2025, 39(11): 24010063-8.
[14] 于慧敏, 郭少红, 贾美林, 贾晶春, 常迎. 硫族半导体催化剂用于高效光催化CO2还原的研究进展[J]. 材料导报, 2025, 39(10): 24040169-9.
[15] 孔德茹, 刘靖, 杨晓林, 孙冬兰, 张进康. 溶胶-凝胶-燃烧法中双功能络合剂对掺铝氧化锌性能影响的研究[J]. 材料导报, 2025, 39(1): 23100131-7.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed