Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24070145-10    https://doi.org/10.11896/cldb.24070145
  无机非金属及其复合材料 |
黏土矿物在煤矿矿井水治理领域的研究进展
姚顺1,2,3, 冯国瑞1,2,3, 赵德康1,2,3, 刘爱芳4,5, 杜娟6, 王帅1,2,3, 姚鑫1,2,3, 侯凯1,2,3,5,*
1 太原理工大学矿业工程学院,太原 030002
2 山西省绿色采矿工程技术研究中心,太原 030024
3 太原理工大学矿山岩层控制及灾害防控山西省重点实验室,太原 030024
4 太原工业学院化学与化工系,太原 030013
5 山西转型综合改革示范区管理委员会,太原 030032
6 山西中科华能科技有限公司,山西 晋中 030032
Research Progress of Clay Minerals in the Field of Coal Mine Water Treatment
YAO Shun1,2,3, FENG Guorui1,2,3, ZHAO Dekang1,2,3, LIU Aifang4,5, DU Juan6, WANG Shuai1,2,3, YAO Xin1,2,3, HOU Kai1,2,3,5,*
1 College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030002, China
2 Shanxi Province Research Center of Green Mining Engineering Technology, Taiyuan 030024, China
3 Key Laboratory of Shanxi Province for Mine Rocks Strata Control and Disaster Prevention, Taiyuan University of Technology, Taiyuan 030024, China
4 Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030013, China
5 Shanxi Transformation and Comprehensive Reform Demonstration Area, Taiyuan 030032, China
6 Shanxi Zhongke Huaneng Technology Co., Ltd., Jinzhong 030032, Shanxi, China
下载:  全 文 ( PDF ) ( 41235KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着煤炭开采程度的增加,矿井水问题日益严峻,尤其是在干旱地区,其低利用率加剧了水资源的短缺。黏土矿物因独特的孔隙结构、高比表面积及强亲水性和电负性,成为矿井水治理的理想材料。本文分析了矿井水的来源、组分特征及对环境的危害,并探讨了黏土矿物的特性及对矿井水中重金属、氟元素及放射性元素的处理机理。具体应用中,黏土基地聚物、膨润土、粉煤灰和凹凸棒土等黏土矿物及其改性材料在处理酸性、碱性及含特殊污染物的矿井水方面展现出显著效果。此外,还介绍了可渗透反应墙、钝化技术及人工湿地技术等在矿井水治理中的工业应用,为推进黏土矿物材料在水处理和矿井水治理领域的研究发展提供思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚顺
冯国瑞
赵德康
刘爱芳
杜娟
王帅
姚鑫
侯凯
关键词:  黏土矿物  酸性矿井水  吸附  煤矿    
Abstract: As coal mining continues to expand, the issue of mine water is becoming increasingly severe, particularly in arid regions, the low utilization of mine water exacerbates water scarcity. Clay minerals present ideal solutions for mine water management due to their unique pore structures, high specific surface area, and strong hydrophilicity and electronegativity. This paper analyzes the sources of mine water, the characteristics of its components, and its environmental impact. Then explores the properties of clay minerals and their mechanisms for treating heavy metals, fluorine, and radioactive elements in mine water. In specific applications, clay-based polymers, bentonite, fly ash, and modified bumpy clay have demonstrated significant effectiveness in treating acidic, alkaline, and specialty pollutant-laden mine water. Furthermore, the paper introduces industrial applications such as permeable reactive walls, passivation technologies, and artificial wetlands in mine water treatment, provides insights for advancing research and development of clay mineral materials in water treatment and mine water management.
Key words:  clay minerals    acid mine water    adsorption    coal mine
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  TD985  
基金资助: 新基石科学基金会所设立的科学探索奖;国家自然科学基金(52474138;52104145);山西省基础研究计划项目(20210302124482);中国博士后科学基金(2024T171050)
通讯作者:  *侯凯,太原理工大学矿业工程学院副研究员、硕士研究生导师。目前主要从事多金属硫化矿和非金属矿选矿、矿物材料高值化应用的研究工作。kaihou2015@163.com   
作者简介:  姚顺,太原理工大学矿业工程学院硕士研究生。主要研究方向为非金属矿选矿和矿物材料功能化应用。
引用本文:    
姚顺, 冯国瑞, 赵德康, 刘爱芳, 杜娟, 王帅, 姚鑫, 侯凯. 黏土矿物在煤矿矿井水治理领域的研究进展[J]. 材料导报, 2025, 39(19): 24070145-10.
YAO Shun, FENG Guorui, ZHAO Dekang, LIU Aifang, DU Juan, WANG Shuai, YAO Xin, HOU Kai. Research Progress of Clay Minerals in the Field of Coal Mine Water Treatment. Materials Reports, 2025, 39(19): 24070145-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070145  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24070145
1 Wu Q, Tu K. Chinese Science Bulletin, 2019, 64(15), 1535 (in Chinese).
武强, 涂坤. 科学通报, 2019, 64(15), 1535.
2 Jia Z J, Lin B Q. Energy, 2021, 233, 121179.
3 Shi Y T, Zhang D D, Gao Y H, et al. Journal of Safety and Environment, 2023, 23(3), 919.
史元腾, 张丹丹, 高耀寰, 等. 安全与环境学报, 2023, 23(3), 919.
4 Gu D Z, Li T, Li J F, et al. Coal Science and Technology, 2021, 49(1), 11 (in Chinese).
顾大钊, 李庭, 李井峰, 等. 煤炭科学技术, 2021, 49(1), 11.
5 Ewis D, Ba-Abbad M M, Benamor A, et al. Applied clay science, 2022, 229, 106686.
6 Zhou C H, Zhao L Z, Wang A Q, et al. Applied Clay Science, 2016, 119, 3.
7 Cao Q Y, Yang L, Qian Y H, et al. Mine Water and the Environment, 2022, 41(4), 1096.
8 Chen G, Ye Y C, Yao N, et al. Journal of Cleaner Production, 2022(1), 330.
9 Zhou R L, Liu Z, Zhao Z M. Coal Science and Technology, 2023, 51(4), 239 (in Chinese).
周如林, 刘宗, 赵中梅. 煤炭科学技术, 2023, 51(4), 239.
10 Wang X F, Gao Y H, Jiang X J, et al. Advances in Civil Engineering, 2021, 1, 9984147.
11 Qian Z W, Huang Z, Song J G. Arabian journal of geosciences, 2018, 11(14), 381.
12 Luo H G, Liu H S, Huang T. Coal Engineering, 2023, 55(3), 156 (in Chinese).
罗伙根, 刘海双, 黄涛. 煤炭工程, 2023, 55(3), 156.
13 Zhao X L. Mechanical Management and Development, 2016, 31(4), 142 (in Chinese).
赵秀龙. 机械管理开发, 2016, 31(4), 142.
14 Hajihashemi S, Rajabpoor S, Schat H. The Science of the Total Environment, 2023, 889, 164269.
15 Wang T L. Shanxi Water Conservancy, 2017(7), 31 (in Chinese).
王桃良. 山西水利, 2017(7), 31.
16 Wang L X, Wang X L. Shanxi Water Resources, 2013, 33(3), 38 (in Chinese).
王利香, 王晓丽. 山西煤炭, 2013, 33(3), 38.
17 Zhang T T, Wang W, Zhao Y l, et al. Chemical Engineering Journal, 2021, 420(2), 127574.
18 Hong M L, Dai L D, Hu H Y, et al. American Mineralogist, 2022, 107(3), 385.
19 Liu M X. Conservation and Utilization of Mineral Resources, 2022, 42(4), 11 (in Chinese).
刘明贤. 矿产保护与利用, 2022, 42(4), 11.
20 Zhou S Q, Niu Y Q, Liu J H, et al. Clays and Clay Minerals, 2022, 70(2), 209.
21 Sedmale G, Randers M, Rundans M, et al. Applied Clay Science, 2017, 146, 397.
22 Wang W, Zhao F Y, Zhang J J, et al. Composites Science and Technology, 2022, 2, 109449.
23 Suarez M, Garcia-Rivas J, Garcia-Romero E, et al. Applied Clay Science, 2016, 131, 124.
24 Du X L, Cui S S, Fang X, et al. Journal of Environmental Chemical Engineering, 2020, 8(6), 104530.
25 Liu X D, Tournassat C, Grangeon S, et al. Nature Reviews Earth & Environment, 2022, 3, 461.
26 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Technical guidelines for acid mine water treatment and reuse:GB/T 37764-2019. Standards Press of China, China,2019 (in Chinese).
中华人民共和国国家质量监督检验检疫总局. 酸性矿井水处理与回用技术导则:GB/T 37764-2019, 中国标准出版社, 2019.
27 Bai C Y, Zheng K K, Sun F, et al. Applied Clay Science, 2024, 258, 107490.
28 Nurlina N, Pratama J H, Pambudi A B, et al. Applied Clay Science, 2024, 251, 107301.
29 Zhang X H, Zhang X, Ma M H, et al. Chemical Engineering Journal, 2024, 496, 154302.
30 Sithole N T, Ntuli F, Okonta F. Minerals Engineering, 2020, 154, 106397.
31 Goncalves N P F, Almeida M M, Labrincha J A, et al. Science of the Total Environment, 2024, 940, 173633.
32 Guan X, Yuan X Z, Zhao Y L, et al. Journal of Colloid and Interface Science, 2022, 612, 572.
33 Esmaeili A, Mobini M, Eslami H. Applied Water Science, 2019, 9(4), 1.
34 Shi H Z, Liu K, Tang R, et al. Chemical Industry and Engineering Progress, 2018, 37(11), 4509 (in Chinese).
施华珍, 刘坤, 汤睿, 等. 化工进展, 2018, 37(11), 4509.
35 Kakaei S, Khameneh E S, Rezazadeh F, et al. Journal of Molecular Structure, 2020, 1199, 126989.
36 Tohdee K, Kaewsichan L, Asadullah. Journal of Environmental Chemical Engineering, 2018, 6(2), 2821.
37 Masindi V, Gitari W M. Journal of Cleaner Production, 2016, 112, 1077.
38 Xiao L P, Liu Y, Pei Q H, et al. Non-Metallic Mines, 2015, 38(3), 80 (in Chinese).
肖利萍, 刘燕, 裴清煌, 等. 非金属矿, 2015, 38(3), 80.
39 Xiao L P, Luan X F, Bai J C, et al. Non-Metallic Mines, 2015, 38(5), 7 (in Chinese).
肖利萍, 栾雪菲, 白际驰, 等. 非金属矿, 2015, 38(5), 71.
40 Wang G F, Chen C, Mo G D, et al. Non-Metallic Mines, 2018, 41(6), 1 (in Chinese).
王桂芳, 陈程, 莫广得, 等. 非金属矿, 2018, 41(6), 1.
41 Zuo W Y, Tong H J, Shi B F. Inorganic Chemicals Industry, 2016, 48(7), 58 (in Chinese).
左卫元, 仝海娟, 史兵方. 无机盐工业, 2016, 48(7), 58.
42 Prasad B, Kumar H. Mine Water and the Environment, 2019, 38(1), 24.
43 Orakwue E O, Asokbunyarat V, Rene E R, et al. Water Air & Soil Pollution, 2016, 227, 4.
44 Jones S N, Cetin B. Fuel, 2017, 188, 294.
45 Chindaprasirt P, Rattanasak U. Journal of Water Process Engineering, 2020, 33, 101118.
46 Falayi T, Ntuli F. Journal of Industrial and Engineering Chemistry, 2014, 20(4), 1285.
47 Falayi T, Ntuli F. The Korean Journal of Chemical Engineering, 2015, 32, 707.
48 Chen H P, Ai Y L, Jia Y F, et al. Science of the Total Environment, 2022, 843, 157120.
49 Moreroa-Monyelo M, Falayi T, Ntuli F, et al. South African Journal of Chemical Engineering, 2022, 42, 241.
50 Zhang C H, Wang W Q, Yang B, et al. Research of Environmental Sciences, 2022, 35(4), 1007 (in Chinese).
张春晖, 王文倩, 杨博, 等. 环境科学研究, 2022, 35(4), 1007.
51 Zhao J X, Li W B, Wang J K. Clean Coal Technology, 2022, 28(2), 175 (in Chinese).
赵佳昕, 李文博, 王吉坤. 洁净煤技术, 2022, 28(2), 175.
52 Mudzielwana R, Gitari W M, Akinyemi S A, et al. Applied Water Science, 2017, 7, 4549.
53 Li X L, Li J, Sun L, et al. Journal of Safety and Environment, 2024, 24(2), 703 (in Chinese).
李喜林, 李健, 孙璐, 等. 安全与环境学报, 2024, 24(2), 703.
54 He R M, Su S Q, Zhao Y, et al. Coal Technology, 2022, 41(8), 111 (in Chinese).
何瑞敏, 苏双青, 赵焰, 等. 煤炭技术, 2022, 41(8), 111.
55 Guerrero J L, Suarez-Vaz N, Paz-Gomez D C, et al. Journal of Hazardous Materials, 2023, 447, 130782.
56 Madzivire G, Maleka P P, Vadapalli V R K, et al. Journal of Environmental Management, 2014, 133, 12.
57 Song P P, Xu D, Yue J Y, et al. Science of the Total Environment, 838(3), 156417.
58 Li H, Liu Q M. Frontiers in Environmental Science, DOI:10.3389/fenvs.2022.968546.
59 Wan H T, Xu J P, Wang Z J. Technology of Water Treatment, 2015, 41(5), 70 (in Chinese).
万海洮, 徐建平, 王兆珺. 水处理技术, 2015, 41(5), 70.
60 Di J Z, Jiang F, Zhu Z T, et al. Chinese Journal of Environmental Engineering, 2014, 8(12), 5111 (in Chinese).
狄军贞, 江富, 朱志涛, 等. 环境工程学报, 2014, 8(12), 5111.
61 Ekolu S O, Bitandi L K. Journal of Environmental Engineering, 2018, 144(9), 04018074.
62 Xia Y, Liu Y Y, Wang L J, et al. Journal of the Chinese Ceramic Society, 2022, 50(5), 1357 (in Chinese).
夏银, 刘月迎, 王丽娟, 等. 硅酸盐学报, 2022, 50(5), 1357.
63 Mafra C, Bouzahzah H, Stamenov L, et al. Applied Geochemistry, 2020, 123(2), 104774.
64 Yu M M, Feng J, Yang Q, et al. Chemosphere, 2022, 287, 132342.
65 Wo Y. Study on the development and performance of the new ceramsite. Master's Thesis, Harbin Institute of Technology, China, 2011 (in Chinese).
沃原. 新型陶粒的研制与性能研究. 硕士学位论文, 哈尔滨工业大学, 2011.
66 Albayrak Z N K, Gencer G. KSCE Journal of Civil Engineering, 2021, 25, 28.
67 Wu H, Jiang C, Cao W P, et al. Environmental Science & Technology, 2022, 45(8), 69 (in Chinese).
吴浩, 江成, 曹文平, 等. 环境科学与技术, 2022, 45(8), 69.
[1] 赵岚, 韩颖超. 纳米氢氧化镧磷吸附剂的制备及水体除磷研究[J]. 材料导报, 2025, 39(8): 24010253-7.
[2] 龙武剑, 唐懿, 郑淑仪, 何闯. 氮掺杂石墨烯量子点作为新型碳钢缓蚀剂:从设计到机理[J]. 材料导报, 2025, 39(7): 23100196-10.
[3] 张怿炜, 胡仁宗, 欧阳柳章, 刘军, 杨黎春, 朱敏. MoC纳米晶/掺氮多孔碳的结构调控及在锂硫电池中的性能优化[J]. 材料导报, 2025, 39(6): 24050008-6.
[4] 史豪, 王雅, 赵尉伶, 罗艳丽, 杨方源, 周金龙. 表面活性剂改性的磁性纳米颗粒对重金属吸附特征[J]. 材料导报, 2025, 39(6): 23090040-8.
[5] 刘平, 王晨, 韩庆文, 苗攀, 马家玉. 半包覆锰基复合锂离子筛的制备与吸附性能[J]. 材料导报, 2025, 39(4): 23110239-7.
[6] 李志录, 王敏. 氯化锂溶液中钾离子的吸附去除研究[J]. 材料导报, 2025, 39(4): 23120006-6.
[7] 杨明, 孙杰, 王金泽, 崔占朋, 吴敏, 杜伟. 金属有机框架及碳基材料在室内有机污染物控制中的研究进展[J]. 材料导报, 2025, 39(4): 24010153-8.
[8] 鲍志超, 周雪松. 高铁酸钾改性酒糟生物炭对诺氟沙星的吸附性能研究[J]. 材料导报, 2025, 39(4): 24010137-8.
[9] 汪淑琪, 左晓宝, 邹欲晓, 刘嘉源. 阳离子对石灰石-煅烧黏土水泥净浆氯离子结合能力的影响[J]. 材料导报, 2025, 39(3): 23110226-8.
[10] 丁亚荣, 李灿华, 章蓝月, 李家茂, 何川, 李明晖, 朱伟长, 韦书贤. 硫化纳米零价铁复合材料对Cu(Ⅱ)去除性能的研究[J]. 材料导报, 2025, 39(2): 23070123-8.
[11] 李红泰, 郭鹏, 安立宝. 硼掺杂碳纳米管吸附硫污染物性能及机理的DFT研究[J]. 材料导报, 2025, 39(15): 24060050-6.
[12] 郭适, 郭启麟, 张瀛博, 巴泓雨, 陆相林, 刘会娥, 陈爽. 石墨烯/碳纳米管复合多孔材料用于光热辅助高黏重油吸附[J]. 材料导报, 2025, 39(13): 24050053-6.
[13] 刘欣颖, 雷雨菡, 张光辉, 顾平. 放射性含钴废水吸附材料的研究进展[J]. 材料导报, 2025, 39(12): 24070147-9.
[14] 刘志伟, 武婵, 遆鑫森, 刘有智. SDBS插层与吸附协同增强片状镍钴氢氧化物的电化学性能[J]. 材料导报, 2025, 39(10): 23070007-8.
[15] 蒋旭, 张峻博, 代朝猛, 李继香, 李质, 买买提江·买斯德克, 张亚雷, 付融冰. 分子印迹技术在地下水修复中的应用研究进展[J]. 材料导报, 2025, 39(10): 23080119-6.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed