Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 24060050-6    https://doi.org/10.11896/cldb.24060050
  无机非金属及其复合材料 |
硼掺杂碳纳米管吸附硫污染物性能及机理的DFT研究
李红泰, 郭鹏, 安立宝*
华北理工大学机械工程学院,河北 唐山 063210
DFT Study on the Performance and Mechanism of Adsorption of Sulfide Pollutants on Boron-doped Carbon Nanotubes
LI Hongtai, GUO Peng, AN Libao*
College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
下载:  全 文 ( PDF ) ( 16798KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 吸附法是处理水体中污染物的常用方法。考虑到现有吸附剂难以满足含硫污水的处理需求,开发一种新型、高效的吸附材料来处理含硫污水是十分必要的。本工作采用基于密度泛函理论(DFT)的方法研究了硼掺杂对碳纳米管电子结构及吸附SO42-、HS-和SCN-性能的影响。结果显示,掺杂过程中硼原子的p轨道电子填充到碳纳米管费米能级处,增强了碳纳米管上掺杂位点的反应活性。相较于本征碳纳米管,硼掺杂碳纳米管与硫污染物的吸附体系发生强电荷转移作用,吸附距离大大缩短,吸附能、电荷转移量和电荷密度显著提升。因此,硼掺杂碳纳米管与硫污染物之间形成了更强的化学吸附。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李红泰
郭鹏
安立宝
关键词:  密度泛函理论  碳纳米管  掺杂  吸附  硫污染物    
Abstract: Adsorption method is a common method for treating pollutants in water. Considering that the existing adsorbents can not meet the need for sulfide-containing sewage treatment, it is necessary to develop a new and efficient adsorption material. The effect of boron doping on the electronic structure of carbon nanotubes and their adsorption properties to SO42-, HS- and SCN- have been studied by using density functional theory calculations. The results show that the p-orbital electrons of boron atoms are filled into the Fermi level of carbon nanotubes during the doping process, which enhances the reactivity of carbon nanotubes for adsorption on the doping sites. Compared with intrinsic carbon nanotubes, boron-doped carbon nanotubes have a strong charge transfer effect with sulfides, and the final adsorption distance is greatly shortened, while the adsorption energy, charge transfer amount, and charge density significantly increases. Therefore, a stronger chemical adsorption is formed between boron-doped carbon nanotubes and sulfide pollutants.
Key words:  density functional theory    carbon nanotube    doping    adsorption    sulfide pollutant
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51472074)
通讯作者:  安立宝,博士,华北理工大学机械工程学院教授。主要从事碳纳米功能材料及其复合材料制备、性能与应用研究。lan@ncst.edu.cn   
作者简介:  李红泰,华北理工大学机械工程学院硕士研究生,在安立宝教授的指导下进行研究。目前主要研究领域为碳纳米材料吸附与催化性能的第一性原理计算。
引用本文:    
李红泰, 郭鹏, 安立宝. 硼掺杂碳纳米管吸附硫污染物性能及机理的DFT研究[J]. 材料导报, 2025, 39(15): 24060050-6.
LI Hongtai, GUO Peng, AN Libao. DFT Study on the Performance and Mechanism of Adsorption of Sulfide Pollutants on Boron-doped Carbon Nanotubes. Materials Reports, 2025, 39(15): 24060050-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060050  或          https://www.mater-rep.com/CN/Y2025/V39/I15/24060050
1 Liu H, Zhang Q, Xing H X, et al. Fuel, 2015, 159, 68.
2 Fan Q, An L, Chang C, et al. Materials Reports, 2023, 37(21), 105 (in Chinese).
范青青, 安立宝, 常春蕊, 等. 材料导报, 2023, 37(21), 105.
3 Jiang C L, Cheng L L, Li C, et al. Ecotoxicology and Environmental Safety, 2022, 248, 114286.
4 Wu S, Du Z, Shen J, et al. Chemical Industry and Engineering Progress, 2023, 42(11), 5929 (in Chinese).
武诗宇, 杜志平, 申婧, 等. 化工进展, 2023, 42(11), 5929.
5 Zeng D L, Liu S L, Gong W J, et al. Clean-Soil Air Water, 2015, 43(7), 975.
6 Hao T W, Xiang P Y, Mackey H R, et al. Water Research, 2014, 65, 1.
7 Recalde-Ruiz D L, Andres-Gracia E, Diaz-Garcia M E. Analytical Letters, 2000, 33(8), 1603.
8 Lu X, Wang K, Cui Z. Materials Reports, 2022, 36(9), 26 (in Chinese).
卢学峰, 王宽, 崔志红. 材料导报, 2022, 36(9), 26.
9 Yang Z, Liu Z, Sklodowska A, et al. Microorganisms, 2021, 9(3), 611.
10 Lin H W, Kustermans C, Vaiopoulou E, et al. Water Research, 2017, 118, 114.
11 Shrestha S, Kulandaivelu J, Sharma K, et al. Chemical Engineering Journal, 2020, 387, 124073.
12 Kegl T, Košak A, Lobnik A, et al. Journal of Hazardous Materials, 2020, 386, 121632.
13 Zhang Y, An L, Fan Q, et al. The Chinese Journal of Nonferrous Metals, 2022, 32(1), 139 (in Chinese).
张炎, 安立宝, 范青青, 等. 中国有色金属学报, 2022, 32(1), 139.
14 Wang Y, Wang B, Yang D, et al. Materials Reports, 2023, 37(22), 22 (in Chinese).
王娅鸽, 王彬彬, 杨德威, 等. 材料导报, 2023, 37(22), 22.
15 Guo P, An L, Zhang Y. Modern Physics Letters B, 2023, 36(36), 2250189.
16 Cui H, Chang X, Chen D, et al. Applied Surface Science, 2019, 471, 335.
17 Liu Y, Zhang H, Zhang Z, et al. Chemical Physics Letters, 2019, 730, 316.
18 Liu Y, An L, Gong L, et al. Acta Materiae Compositae Sinica, 2018, 35(5), 1332 (in Chinese).
刘扬, 安立宝, 龚亮, 等. 复合材料学报, 2018, 35(5), 1332.
19 Baydir E, Altun A, Fellah M F. Protection of Metals and Physical Che-mistry of Surfaces, 2022, 58(5), 949.
20 Wang K, Shi C, Zhao N, et al. Acta Physica Sinica, 2008, 57(12), 7833 (in Chinese).
王昆鹏, 师春生, 赵乃勤, 等. 物理学报, 2008, 57(12), 7833.
21 He W, Xue P, Du H, et al. International Journal of Hydrogen Energy, 2017, 42(7), 4123.
22 Sharma A, Patwardhan A, Dasgupta K, et al. Chemical Engineering Science, 2019, 207, 1341.
23 Ye L, Peng Z, Tian R, et al. Powder Technology, 2022, 410, 117848.
24 Wang G, Ding Y, Wang J, et al. International Journal of Minerals Metallurgy and Materials, 2013, 20, 522.
25 Chesnokov V V, Prosvirin I P, Gerasimov E Y, et al. Materials, 2023, 16(5), 1986.
26 Ha S, Choi G B, Hong S, et al. Carbon Letters, 2018, 27, 1.
27 Hamel S, Duffy P, Casida M E, et al. Journal of Electron Spectroscopy and Related Phenomena, 2002, 123(2-3), 345.
28 Levy M, Zahariev F. Physical Review Letters, 2014, 113(11), 113002.
29 Wu Z G, Cohen R E. Physical Review B, 2006, 73(23), 235116.
30 Abdel-Sattar M K, Taha M. Materials Research Express, 2020, 7(4), 045901.
31 Wang X, Wang X, Yin Q, et al. The Chinese Journal of Noferrous Metals, 2014, 24(5), 1327 (in Chinese).
王鑫, 王欣, 尹倩倩, 等. 中国有色金属学报, 2014, 24(5), 1327.
32 Abbasi M, Nemati-Kande E. Journal of Physics and Chemistry of Solids, 2021, 158, 110230.
33 Srivastava R, Khan M S, Shrivastava S, et al. Chemical Physics Letters, 2017, 667, 199.
34 Jia X, An L, Chen T. Adsorption-Journal of the International Adsorption Society, 2020, 26(4), 587.
35 Wang R, Zhang D, Sun W, et al. Journal of Molecular Structure:Theochem, 2007, 806(1-3), 93.
36 Du J, Min F, Zhang M, et al. Journal of China Coal Society, 2018, 43(9), 2625 (in chinese).
杜佳, 闵凡飞, 张明旭, 等. 煤炭学报, 2018, 43(9), 2625.
37 Yan K Y, Xue Q Z, Zheng Q B, et al. Journal of Physical Chemistry C, 2009, 113(8), 3120.
38 Afshari T, Mohsennia M. Molecular Simulation, 2019, 45(16), 1384.
39 Ganji M D, Ahangari M G, Khosravi A. Applied Surface Science, 2014, 290, 86.
40 Zhou Q, Wang C, Fu Z, et al. Computational Materials Science, 2013, 82, 337.
41 Perdew J P, Chevary J A, Vosko S H, et al. Physical Review B, 1992, 46(11), 6671.
42 Li W, Li G, Lu X, et al. Chemical Physics Letters, 2016, 658, 162.
43 Dag S, Gulseren O, Ciraci S. Chemical Physics Letters, 2003, 380(1-2), 1.
[1] 韩帅文, 朱可晟, 刘长洋, 刘子良, 卞刘振, 杨礼林. 固体氧化物电池金属连接体锰钴涂层材料研究进展[J]. 材料导报, 2025, 39(8): 23100253-6.
[2] 赵岚, 韩颖超. 纳米氢氧化镧磷吸附剂的制备及水体除磷研究[J]. 材料导报, 2025, 39(8): 24010253-7.
[3] 刘宇, 张健, 庞小通, 周小杰, 卢先正, 陈小敏, 李佳豪, 彭平. 镧镍系合金对氢化镁组织结构与储氢性能的影响及机理[J]. 材料导报, 2025, 39(8): 24040039-6.
[4] 武金帆, 徐芬, 孙立贤, 廖鹿敏, 管彦洵. 具有抗氧化性的Al-Bi(C2H5OH)3-C多孔块体制氢材料[J]. 材料导报, 2025, 39(8): 24030133-6.
[5] 陈旭, 廖静, 谭理, 李海进. 金属卤化物钙钛矿材料自掺杂研究进展[J]. 材料导报, 2025, 39(7): 24020097-9.
[6] 鲍艳, 谢梦爽, 郭茹月, 张婧. VO2智能调温涂层的研究进展[J]. 材料导报, 2025, 39(7): 24030036-7.
[7] 龙武剑, 唐懿, 郑淑仪, 何闯. 氮掺杂石墨烯量子点作为新型碳钢缓蚀剂:从设计到机理[J]. 材料导报, 2025, 39(7): 23100196-10.
[8] 张怿炜, 胡仁宗, 欧阳柳章, 刘军, 杨黎春, 朱敏. MoC纳米晶/掺氮多孔碳的结构调控及在锂硫电池中的性能优化[J]. 材料导报, 2025, 39(6): 24050008-6.
[9] 史豪, 王雅, 赵尉伶, 罗艳丽, 杨方源, 周金龙. 表面活性剂改性的磁性纳米颗粒对重金属吸附特征[J]. 材料导报, 2025, 39(6): 23090040-8.
[10] 李门, 李天鹏, 郭爱强, 刘建国, 高欣宝. vG和Cu/vG体系对H2O吸附的第一性原理研究[J]. 材料导报, 2025, 39(6): 23120052-5.
[11] 李辉, 郭文尧, 肖强强, 王梦千, 杜守勤, 李国宁, 李诗杰, 郭敏, 马晓玲. Zn掺杂ZIF-67构筑光热-相变储能一体化材料的性能研究[J]. 材料导报, 2025, 39(6): 23100236-7.
[12] 赵伟馨, 彭孔浩, 武玥, 郭文, 高鹤然, 张凌燕, 彭微, 李淑荣, 孟佩俊. PEI-NaGdF4:Yb3+,Tm3+稀土掺杂上转换纳米材料的制备及性能[J]. 材料导报, 2025, 39(5): 24120175-7.
[13] 陈阿青, 梁轻. Nb掺杂二氧化钛纳米管电子结构第一性原理计算[J]. 材料导报, 2025, 39(4): 23100185-6.
[14] 刘平, 王晨, 韩庆文, 苗攀, 马家玉. 半包覆锰基复合锂离子筛的制备与吸附性能[J]. 材料导报, 2025, 39(4): 23110239-7.
[15] 李志录, 王敏. 氯化锂溶液中钾离子的吸附去除研究[J]. 材料导报, 2025, 39(4): 23120006-6.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed