Study on the Microstructure and Elevated Temperature Creep Properties of In-situ ZrB2 Particulates Reinforced Al-12Si Composites
LI Qiusheng1, LI Anmin1,2,3,*, SUI Qingping1
1 School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China 2 State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China 3 MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi University, Nanning 530004, China
Abstract: This study successfully synthesized ZrB2/Al-12Si composite through salt-metal reaction pathway and investigated the effects of ZrB2 mass fraction and heat treatment process on the microstructure and elevated temperature tensile creep properties of the composite. The creep test results show that the steady-state creep rate of the 4wt%ZrB2/Al-12Si composite is significantly lower than the steady-state creep rate of Al-12Si alloy, indicating that the addition of ZrB2 nanoparticles effectively improves the creep resistance. ZrB2 nanoparticles have good elevated temperature thermal stability, effectively hindering the movement of dislocations and the migration of grain boundaries during elevated temperature creep processes. In addition, due to the deflection and branching of cracks, ZrB2 nanoparticles increase the length of crack propagation path. Under the same temperature and stress conditions, the steady-state creep rate of T5 state 4wt%ZrB2/Al-12Si composite is lower than that of T6 state 4wt%ZrB2/Al-12Si composite. The research results on the influence of heat treatment process on the creep of composite show that T5 state and T6 state composite have similar creep stress indices. Due to the influence of T6 heat treatment on the microstructure of the composite, the disintegration of the eutectic silicon network structure leads to a decrease in its ability to bear stress, resulting in an increase in the steady-state creep rate of T6 state composite materials. The true stress index of both T5 state and T6 state ZrB2/Al-12Si composite is 5.0, and the creep mechanism is dislocation climb mechanism. The strengthening mechanism of composite is Orowan strengthening and fine grain strengthening induced by nano-sized ZrB2 particles.
李秋生, 李安敏, 眭清平. 原位反应法制备ZrB2/Al-12Si复合材料的显微组织及高温蠕变性能[J]. 材料导报, 2025, 39(19): 24070139-9.
LI Qiusheng, LI Anmin, SUI Qingping. Study on the Microstructure and Elevated Temperature Creep Properties of In-situ ZrB2 Particulates Reinforced Al-12Si Composites. Materials Reports, 2025, 39(19): 24070139-9.
1 Sachinkumar, Narendranath S, Chakradhar D. Materials Today:Procee-dings, 2020, 20, A1. 2 Han L, Sui Y, Wang Q, et al. Journal of Alloys and Compounds, 2017, 695, 1566. 3 Sui Y, Wang Q, Liu T, et al. Journal of Alloys and Compounds, 2015, 644, 228. 4 Siebeck S, Roder K, Wagner G, et al. Metals, 2018, 8(2), 110. 5 Wang Y. Research on the high temperature creep properties of A356. 2 matrix composites reinforced by in situ nanoparticle ZrB2 and Er rare earth. Master's Thesis, Jiangsu University, China, 2017 (in Chinese). 王研. 原位纳米ZrB2颗粒与稀土Er协同强化A356. 2基复合材料的高温蠕变性能研究. 硕士学位论文, 江苏大学, 2017. 6 Lei W, Feng Q, Qing L Z, et al. Scientific Reports, 2017, 7, 4540. 7 Gong D, Cao Y, Zhan Y, et al. Materials Science & Engineering A, 2020, 771, 138606. 8 Monazzah A H, Simchi A, Reihani S M S. Materials Science & Enginee-ring A, 2010, 527(10-11), 2567. 9 Kai X, Huang S, Wu L, et al. Journal of Materials Science & Technology, 2019, 35(9), 2107. 10 Qian W, Kai X, Tao R, et al. Materials Characterization, 2023, 196, 112620. 11 Sun X F. Research on the preparation and high temperature creep properties of in situ particulate reinforced A357 matrix composites. Master's Thesis, Jiangsu University, China, 2016 (in Chinese). 孙霞飞. 原位颗粒增强A357基复合材料的制备及高温蠕变性能研究. 硕士学位论文, 江苏大学, 2016. 12 Sui Y D. Study on the microstructural and elevated temperature properties of cast Al-Si-Cu-Ni-Mg alloys. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2016 (in Chinese). 隋育栋. Al-Si-Cu-Ni-Mg系铸造耐热铝合金组织及其高温性能研究. 博士学位论文, 上海交通大学, 2016. 13 Mazahery A, Shabani M O. Transactions of Nonferrous Metals Society of China, 2012, 22, 275. 14 Tian W S, Zhao Q L, Geng R, et al. Materials Science & Engineering A, 2018, 713, 190. 15 Suwanpreecha C, Rakhmonov J U, Chankitmunkong S, et al. Materials Science & Engineering A, 2022, 841, 142963. 16 Gupta R, Daniel B S S. Materials Science & Engineering A, 2018, 733, 257. 17 Deshmukh S P, Mishra R S, Robertson I M. Materials Science & Engineering A, 2009, 527, 2390. 18 Ji F, Ma M Z, Song A J, et al. Materials Science & Engineering A, 2008, 506, 58. 19 Abdu M T, Soliman M S, Danaf E A, et al. Materials Science & Engineering A, 2011, 531, 35. 20 Shastry C G, Parameswaran P, Mathew M D, et al. Materials Science & Engineering A, 2007, 473, 133. 21 Zhang J, Jiang X, Ma M, et al. Materials Science & Engineering A, 2017, 699(24), 194. 22 Tian W S, Zhao Q L, Zhang Q Q, et al. Materials Science & Engineering A, 2017, 700, 42. 23 Vo N Q, Dunand D C, Seidman D N. Acta Materialia, 2014, 63, 73. 24 Shasha Z, Haiquan D, Zhengjun Y, et al. Materials Science & Enginee-ring A, 2022, 850, 143533. 25 Cheng K, Zhang L, Lu C, et al. Scientific Reports, 2016, 6, 25427. 26 Mcreynolds K, Wu K A, Voorhees P. Acta Materialia, 2016, 120, 264. 27 Rupert T J, Gianola D S, Gan Y, et al. Science, 2009, 326, 1686. 28 Winning M, Gottstein G, Shvindlerman L S. Acta Materialia, 2001, 49(2), 211. 29 Hidehiro Y, Kenji Y, Naoya S, et al. Acta Materialia, 2004, 52(8), 2349. 30 Chaim R. Scripta Materialia, 2012, 66(5), 269. 31 Zhao P, Zhao Y, Kai X, et al. International Journal of Metalcasting, 2023, 18(2), 1026. 32 Lim A T, Srolovitz D J, Haataja M. Acta Materialia, 2009, 57(17), 5013. 33 Fernández R, Requena G C. Materials Science & Engineering A, 2014, 598, 147. 34 Chen X, Tao J, Liu Y, et al. Carbon, 2019, 146, 736. 35 Guan C, Zhao Y, Chen G, et al. Materials Science & Engineering A, 2021, 822, 141661.