Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24070139-9    https://doi.org/10.11896/cldb.24070139
  金属与金属基复合材料 |
原位反应法制备ZrB2/Al-12Si复合材料的显微组织及高温蠕变性能
李秋生1, 李安敏1,2,3,*, 眭清平1
1 广西大学资源环境与材料学院,南宁 530004
2 广西大学省部共建特色金属材料与组合结构全寿命安全国家重点实验室,南宁 530004
3 广西大学有色金属及材料加工新技术教育部重点实验室,南宁 530004
Study on the Microstructure and Elevated Temperature Creep Properties of In-situ ZrB2 Particulates Reinforced Al-12Si Composites
LI Qiusheng1, LI Anmin1,2,3,*, SUI Qingping1
1 School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
2 State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
3 MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi University, Nanning 530004, China
下载:  全 文 ( PDF ) ( 49137KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究通过盐-金属反应途径成功合成了ZrB2/Al-12Si复合材料,研究了ZrB2质量分数和热处理工艺对复合材料显微组织、高温蠕变性能的影响。蠕变实验结果表明,4%ZrB2/Al-12Si(质量分数,如无特别说明,下同)复合材料的稳态蠕变速率明显比Al-12Si合金小,表明ZrB2纳米颗粒的加入有效地提高了基体合金的蠕变阻力。ZrB2纳米颗粒高温热稳定性好,有效地阻碍了位错的运动和高温蠕变过程中晶界的迁移。此外,由于裂纹的偏转和裂纹的分支,ZrB2纳米颗粒增加了裂纹扩展路径的长度。在相同的温度和应力条件下,T5态4%ZrB2/Al-12Si复合材料的稳态蠕变速率比T6态4%ZrB2/Al-12Si复合材料的稳态蠕变速率小。热处理工艺对复合材料蠕变影响的研究结果表明,T5态和T6态复合材料具有相近的蠕变应力指数。由于T6热处理影响了复合材料的微观结构,共晶硅网状结构的瓦解导致其承担应力的能力下降,使T6态复合材料稳态蠕变速率变大。T5态和T6态ZrB2/Al-12Si复合材料的真实应力指数均为5.0,蠕变机制均为位错攀移机制。复合材料的强化机制为由ZrB2纳米颗粒引起的Orowan强化和细晶强化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李秋生
李安敏
眭清平
关键词:  铝基复合材料  高温蠕变  热处理  ZrB2颗粒    
Abstract: This study successfully synthesized ZrB2/Al-12Si composite through salt-metal reaction pathway and investigated the effects of ZrB2 mass fraction and heat treatment process on the microstructure and elevated temperature tensile creep properties of the composite. The creep test results show that the steady-state creep rate of the 4wt%ZrB2/Al-12Si composite is significantly lower than the steady-state creep rate of Al-12Si alloy, indicating that the addition of ZrB2 nanoparticles effectively improves the creep resistance. ZrB2 nanoparticles have good elevated temperature thermal stability, effectively hindering the movement of dislocations and the migration of grain boundaries during elevated temperature creep processes. In addition, due to the deflection and branching of cracks, ZrB2 nanoparticles increase the length of crack propagation path. Under the same temperature and stress conditions, the steady-state creep rate of T5 state 4wt%ZrB2/Al-12Si composite is lower than that of T6 state 4wt%ZrB2/Al-12Si composite. The research results on the influence of heat treatment process on the creep of composite show that T5 state and T6 state composite have similar creep stress indices. Due to the influence of T6 heat treatment on the microstructure of the composite, the disintegration of the eutectic silicon network structure leads to a decrease in its ability to bear stress, resulting in an increase in the steady-state creep rate of T6 state composite materials. The true stress index of both T5 state and T6 state ZrB2/Al-12Si composite is 5.0, and the creep mechanism is dislocation climb mechanism. The strengthening mechanism of composite is Orowan strengthening and fine grain strengthening induced by nano-sized ZrB2 particles.
Key words:  aluminum matrix composite    elevated temperature creep    heat treatment    ZrB2 particle
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  TB35  
基金资助: 广西重点研发计划(桂科 AB22080015);2022 年广西科技基地和人才专项(桂科 AD21238010); 2021 年中央引导地方科技发展资金专项(桂科ZY21195030)
通讯作者:  *李安敏,博士,广西大学资源环境与材料学院副教授、硕士研究生导师。主要从事高熵合金、铝合金的强韧化、复合材料方面的研究。lamanny@126.com   
作者简介:  李秋生,广西大学资源环境与材料学院硕士研究生,在李安敏副教授的指导下进行研究。目前主要研究领域为耐热铝合金。
引用本文:    
李秋生, 李安敏, 眭清平. 原位反应法制备ZrB2/Al-12Si复合材料的显微组织及高温蠕变性能[J]. 材料导报, 2025, 39(19): 24070139-9.
LI Qiusheng, LI Anmin, SUI Qingping. Study on the Microstructure and Elevated Temperature Creep Properties of In-situ ZrB2 Particulates Reinforced Al-12Si Composites. Materials Reports, 2025, 39(19): 24070139-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070139  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24070139
1 Sachinkumar, Narendranath S, Chakradhar D. Materials Today:Procee-dings, 2020, 20, A1.
2 Han L, Sui Y, Wang Q, et al. Journal of Alloys and Compounds, 2017, 695, 1566.
3 Sui Y, Wang Q, Liu T, et al. Journal of Alloys and Compounds, 2015, 644, 228.
4 Siebeck S, Roder K, Wagner G, et al. Metals, 2018, 8(2), 110.
5 Wang Y. Research on the high temperature creep properties of A356. 2 matrix composites reinforced by in situ nanoparticle ZrB2 and Er rare earth. Master's Thesis, Jiangsu University, China, 2017 (in Chinese).
王研. 原位纳米ZrB2颗粒与稀土Er协同强化A356. 2基复合材料的高温蠕变性能研究. 硕士学位论文, 江苏大学, 2017.
6 Lei W, Feng Q, Qing L Z, et al. Scientific Reports, 2017, 7, 4540.
7 Gong D, Cao Y, Zhan Y, et al. Materials Science & Engineering A, 2020, 771, 138606.
8 Monazzah A H, Simchi A, Reihani S M S. Materials Science & Enginee-ring A, 2010, 527(10-11), 2567.
9 Kai X, Huang S, Wu L, et al. Journal of Materials Science & Technology, 2019, 35(9), 2107.
10 Qian W, Kai X, Tao R, et al. Materials Characterization, 2023, 196, 112620.
11 Sun X F. Research on the preparation and high temperature creep properties of in situ particulate reinforced A357 matrix composites. Master's Thesis, Jiangsu University, China, 2016 (in Chinese).
孙霞飞. 原位颗粒增强A357基复合材料的制备及高温蠕变性能研究. 硕士学位论文, 江苏大学, 2016.
12 Sui Y D. Study on the microstructural and elevated temperature properties of cast Al-Si-Cu-Ni-Mg alloys. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2016 (in Chinese).
隋育栋. Al-Si-Cu-Ni-Mg系铸造耐热铝合金组织及其高温性能研究. 博士学位论文, 上海交通大学, 2016.
13 Mazahery A, Shabani M O. Transactions of Nonferrous Metals Society of China, 2012, 22, 275.
14 Tian W S, Zhao Q L, Geng R, et al. Materials Science & Engineering A, 2018, 713, 190.
15 Suwanpreecha C, Rakhmonov J U, Chankitmunkong S, et al. Materials Science & Engineering A, 2022, 841, 142963.
16 Gupta R, Daniel B S S. Materials Science & Engineering A, 2018, 733, 257.
17 Deshmukh S P, Mishra R S, Robertson I M. Materials Science & Engineering A, 2009, 527, 2390.
18 Ji F, Ma M Z, Song A J, et al. Materials Science & Engineering A, 2008, 506, 58.
19 Abdu M T, Soliman M S, Danaf E A, et al. Materials Science & Engineering A, 2011, 531, 35.
20 Shastry C G, Parameswaran P, Mathew M D, et al. Materials Science & Engineering A, 2007, 473, 133.
21 Zhang J, Jiang X, Ma M, et al. Materials Science & Engineering A, 2017, 699(24), 194.
22 Tian W S, Zhao Q L, Zhang Q Q, et al. Materials Science & Engineering A, 2017, 700, 42.
23 Vo N Q, Dunand D C, Seidman D N. Acta Materialia, 2014, 63, 73.
24 Shasha Z, Haiquan D, Zhengjun Y, et al. Materials Science & Enginee-ring A, 2022, 850, 143533.
25 Cheng K, Zhang L, Lu C, et al. Scientific Reports, 2016, 6, 25427.
26 Mcreynolds K, Wu K A, Voorhees P. Acta Materialia, 2016, 120, 264.
27 Rupert T J, Gianola D S, Gan Y, et al. Science, 2009, 326, 1686.
28 Winning M, Gottstein G, Shvindlerman L S. Acta Materialia, 2001, 49(2), 211.
29 Hidehiro Y, Kenji Y, Naoya S, et al. Acta Materialia, 2004, 52(8), 2349.
30 Chaim R. Scripta Materialia, 2012, 66(5), 269.
31 Zhao P, Zhao Y, Kai X, et al. International Journal of Metalcasting, 2023, 18(2), 1026.
32 Lim A T, Srolovitz D J, Haataja M. Acta Materialia, 2009, 57(17), 5013.
33 Fernández R, Requena G C. Materials Science & Engineering A, 2014, 598, 147.
34 Chen X, Tao J, Liu Y, et al. Carbon, 2019, 146, 736.
35 Guan C, Zhao Y, Chen G, et al. Materials Science & Engineering A, 2021, 822, 141661.
[1] 祝林, 王帅, 游龙, 刘娟, 逄显娟, 陆焕焕, 宋晨飞, 张永振. Mo2BC增强Al基复合材料摩擦学性能研究[J]. 材料导报, 2025, 39(9): 24010247-6.
[2] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[3] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[4] 曹茗凯, 刘崟, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义, 王文广. 高能球磨过程中CNT对纳米TiO2增强铝基复合材料粉末形貌及粒径的影响[J]. 材料导报, 2025, 39(18): 24070186-6.
[5] 付同宇, 曹燕光, 李昭东, 魏坤霞, 张建卫, 谭峰亮. 基于超声法对不同状态高强度结构钢板残余应力研究[J]. 材料导报, 2025, 39(17): 24060139-7.
[6] 马宁, 朱建锋, 常柯, 秦宇星, 毛勇, 马文宗. 不同温度退火热处理对Al-Mg-Ga-Sn可溶铝合金塑性及组织的影响研究[J]. 材料导报, 2025, 39(17): 24080053-8.
[7] 李灏, 刘宇伦, 刘金龙, 陈良贤, 李成明, 魏俊俊. 真空热处理对金刚石基TaxN薄膜微观结构及电学性能的影响[J]. 材料导报, 2025, 39(15): 24060003-5.
[8] 张鹏德, 李广, 刘玉鹏, 石玗. 热处理对热丝激光增材制造17-4PH不锈钢组织性能的影响[J]. 材料导报, 2025, 39(15): 24080123-7.
[9] 冯殿远, 刘诗超, 王善林, 李欢欢, 洪敏, 涂文斌. 热处理对30CrMnSiNi2A钢电子束焊接头组织和性能的影响[J]. 材料导报, 2025, 39(14): 24040172-7.
[10] 徐升亮, 廖凯, 杨湘杰, 郭洪民. Sc含量及热处理对Al-Si-Cu-Mg合金组织及热学性能的影响[J]. 材料导报, 2025, 39(11): 24060195-8.
[11] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[12] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[13] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[14] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[15] 张勇, 王斌斌, 刘琛, 李斌强, 赵俊波, 李志文, 李哲, 赵春志, 王亮, 苏彦庆. 增材制造金属材料在海洋环境下的耐蚀性能——综述[J]. 材料导报, 2024, 38(23): 23080239-11.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed